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ABSTRACT

Problem. The physical origin of the cosmological constant Λ remains unsettled; in standard practice, Λ is inserted
as a free parameter in Einstein’s equations and tuned to data. Method. Develop a boundary–curvature framework
on an embedded toroidal manifold. Motion on this surface follows brachistochrone (least–time) helical paths, so
quantisation is performed per radian: the reduced Planck constant ℏ plays the central role and the 2π factor
associated with h does not appear. Entropy is evaluated via the Bekenstein–Hawking law, and a four–sector tripling
rule for microstate amplification is enforced. One measured outer circumference c0 anchors the construction. The
per–radian normalization is not an assumption: it is derived explicitly from the Einstein–Hilbert action with the
Gibbons–Hawking–York (GHY) boundary term (Appendix E; see Sec. 10 for a concise summary and Sec. 11 for its
connections to holography). Result. With rh = c0/(8π) and K = 1/r2h, the cross–sector coefficient ωmix = 7/15,
together with the dimensionless bridge Cf , yields a closed, rational prediction:

Λ =

(
45927

42050

)
× 10−52 m−2 ≈ 1.0922× 10−52 m−2,

consistent with the 2025 consensus band (1.10± 0.05)× 10−52 m−2 and obtained without any adjustable empirical
parameters.
Falsifiability and Scope. The framework defines three dimensionless invariants: (1) the per-radian offset 1/(2π),
(2) the replication-invariant cross-sector ratio ωmix = 7/15, and (3) the slope-−2 sensitivity ∂Λ/∂c0 = −2Λ/c0. Its
validity is explicitly contingent upon the Minimal-Closure Brachistochrone Toroid (MCBT) premise.
Evidence Status. This manuscript reports no direct physical measurements. Experimental validation remains
proposed (Sec. C) and simulated (Appendices F and H) only.

Keywords
boundary–curvature law; brachistochrone closure; cross-sector mixing; entanglement–gravity crossover; holo-

graphic entropy; microstate combinatorics; minimal-closure toroid; per-radian normalization; toroidal quantisation;
cosmological constant.
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1 Introduction
Observations of the cosmic microwave background, distant supernovae, and large-scale structure consistently

indicate the presence of a small but nonzero cosmological constant, Λ[Collaboration et al.(2020)Collaboration
et al., Collaboration et al.(2025)Collaboration et al., Collaboration et al.(2024)Collaboration et al.]. These analyses
converge on values of order 10−52 m−2, yet the physical origin of this term remains unsettled. In conventional
treatments, Λ is introduced as a free parameter in Einstein’s equations and tuned to observations. While
successful phenomenologically, this approach provides no first-principles explanation for why Λ takes its observed
value[Einstein(1917), Fritzsch(1984), Jordan(1955)].

This work develops a geometric and holographic alternative. The framework models spacetime dynamics on
a toroidal surface, with motion advancing along brachistochrone-type (least-time) helical paths. Because these
trajectories are intrinsically rotational, quantisation proceeds naturally on a per-radian basis, making the reduced
Planck constant ℏ the fundamental unit. By contrast, a per-cycle formulation using h introduces an artificial 2π
factor. This link is made explicit by deriving the per-radian normalization from a recognised boundary term: (i)
path-integral periodicity on S1 (Matsubara/KMS) and (ii) the 2π that enters horizon/entropic gravity via Unruh
temperature; see Sec. 10 (cf. [Verlinde(2011), Padmanabhan(2010)]).

The construction is holographic: bulk information is encoded on a codimension-1 boundary where state counting
scales with area. Use standard labels (e.g., embedded toroidal manifold, holographic boundary) in equations; informal
synonyms are confined to Sec. 2. Entropy uses the Bekenstein–Hawking area law[Bekenstein(1973), Hawking(1975)];
the microstate rule—four base sectors with tripling amplification—follows from minimal geodesic closure at fixed
c0.

Single-premise stance (MCBT). One premise is adopted, the Minimal-Closure Brachistochrone Toroid
(MCBT). From this premise the microstate rule W (n) = 4 · 3n and sector weights (1, 1, 3) follow uniquely from it,
where n denotes the fold or replication index in the microstate amplification (the number of tripling steps). No
additional dynamical hypotheses are introduced.

Operational meaning of c0. Throughout this work c0 denotes the single measured outer circumference that
sets both curvature and boundary-area scales. It is not a cosmic-scale horizon length but a fixed microscopic
closure scale. The minimal admissible circumference defining the toroidal quantisation boundary. Once c0 is
fixed by observation or microphysical derivation, all downstream quantities—including rh = c0/(8π), ωmix, and
Cf—follow without further tuning. This constant establishes the geometric normalization for holographic state
counting, all downstream quantities—including the curvature radius rh = c0/(8π), the cross-sector coefficient ωmix,
and the scaling factor Cf—follow without further tuning.

Position in literature. Standard approaches treat Λ via (i) vacuum energy with regularization/renormalization
choices, (ii) dynamical dark-energy fields (quintessence), (iii) modified-gravity terms, or (iv) holographic bounds.
Vacuum-energy approaches tend to overestimate Λ by ∼ 10120[Weinberg(1989), Padilla(2015)]. Quintessence
introduces scalar potentials with multiple free parameters tuned to match the expansion history[Copeland
et al.(2006)Copeland, Sami, and Tsujikawa]. Modified-gravity theories alter the Einstein–Hilbert action with extra
curvature terms, producing effective Λ-like contributions but facing strong solar-system and cosmological con-
straints[Verlinde(2011), Padmanabhan(2010)]. Generic holographic dark-energy (HDE) models tie Λ to area/entropy
bounds using IR cutoffs[Cohen et al.(1999)Cohen, Kaplan, and Nelson, Li(2004), Wang et al.(2017)Wang, Wang,
and Li]; recent post-DESI reassessments sharpen this landscape and still generally yield proportionalities rather
than closed predictions[Li et al.(2025)Li, Li, Du, Wu, Feng, Zhang, and Zhang, Samaddar et al.(2024)Samaddar
et al., Luciano et al.(2025)Luciano, Paliathanasis, and Saridakis]. Recent entropic/thermodynamic gravity routes
(e.g., [Bianconi(2025), Alonso-Serrano and Liska(2025)]) also motivate boundary-based constructions but do not
produce a closed rational Λ.

How this differs from HDE (explicit).

• Closed-form value, not a proportionality: Λ =
(
45927
42050

)
× 10−52 m−2.

• Fixed curvature scale: rh = c0/(8π); no IR cutoff or horizon-choice tuning.

• Integer structure: (1, 1, 3) sectoring and ωmix = 7/15 are counting identities from closure geometry.
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• Dimensionless bridge: Cf reconciles per-radian counting with Planck-unit SBH; it is not a fit parameter.

• Concrete tests: per-radian offset 1/(2π), replication-invariant ωmix, and slope −2 sensitivity to c0.

Motivation for Minimal-Closure Brachistochrone Toroid (MCBT)
The Minimal-Closure Brachistochrone Toroid (MCBT) premise selects, among admissible closed boundary

flows, the least-circumference helical geodesic that preserves single-valued boundary mapping and arch periodicity.
It mirrors (i) brachistochrone/tautochrone optimality for rotational motion[Tikhomirov(1990)] and (ii) Euclidean
near-horizon regularity where the angular variable is fundamental. In this setting the torus arises as the minimally
self-consistent compact surface supporting a single global angular clock and a meridional step, with closure
enforcing an integer sector partition. This geometric + variational selection does not introduce a new force law; its
falsifiable outputs are the per-radian offset 1/(2π), the replication-invariant leakage ωmix = 7/15, and the slope −2
sensitivity ∂Λ/∂c0.

Why a torus? A torus is the simplest closed surface that supports two independent periodic directions: one angular
coordinate around the “hole” and one around the “tube.” In the boundary–curvature setting, the global angular
coordinate provides a natural clock for per-radian quantisation, while the meridional coordinate tracks the helical
advance. The requirement that the geodesic returns to its starting point without self-intersection singles out a
torus over other compact surfaces (e.g., a sphere lacks a second noncontractible loop). The Minimal-Closure
premise enforces that this closed geodesic has the least possible circumference among all admissible brachistochrone
paths, mirroring familiar extremal principles such as least-action or least-time. Thus the choice of an embedded
toroidal geometry is not arbitrary but follows from seeking a minimal self-consistent configuration for rotational
motion.

On parameter count. Once c0 is specified, the construction fixes Λ without any additional knobs. Competing
classes typically require at least two tuned quantities—for example, an IR cutoff scale and a dimensionless
coefficient in holographic dark-energy models, or potential parameters in quintessence. In contrast, rh = c0/(8π),
ωmix = 7/15, and the bridging factor Cf are fixed by boundary closure and per-radian counting; there remain zero
fit parameters beyond the circumference.

Roadmap of the Paper. For clarity, briefly outlined is how the argument proceeds. Section 2 collects definitions
and establishes notation. Section 4 constructs the closed cycloid on the unwrapped boundary and derives the
(1, 1, 3) partition from the Minimal-Closure Brachistochrone Toroid (MCBT) premise. Section 5 uses this partition
to compute the microstate growth law W (n) = 4 · 3n and the cross-sector mixing coefficient ωmix = 7/15. Section 6
combines the curvature scale rh = c0/(8π) with these combinatorial factors and a dimensionless bridge Cf to
obtain a closed expression for the cosmological constant. Section 7 checks consistency by matching the microstate
entropy to the Bekenstein–Hawking area law and inverting for ℏ. Later sections place the result in the context
of holography and quantum gravity (Section 11), contrast it with competing frameworks (Section 12), explore a
microphysical derivation of c0 (Section 22), and discuss falsifiability, experimental proposals, and next steps. A
summary of assumptions and the domain of validity is provided in Section 3.

2 Definitions and Terminology
Purpose. Consolidates symbols and terms used throughout. Informal synonyms appear here only and are not

used in equations; standard terms follow differential-geometry usage.

Units and Conventions
• per-radian normalization: quantisation is counted in units of ℏ (per radian). Per-cycle quantities use
h = 2πℏ only by contrast.

• GR and constants: Standard GR sign conventions; c (speed of light), G (Newton’s constant), kB
(Boltzmann’s constant).

• Curvature convention: K := 1/r2h with rh = c0/(8π).
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Geometric Quantities
• Outer circumference c0: The single measured length that anchors both curvature and boundary area

scales. Fixed here at c0 =
(
29
27

)
× 10−35 m.

• Horizon curvature radius rh: rh := c0/(8π); sets the curvature scale K = 1/r2h. Used in the Λ route.

• Horn-torus radius parameter R: R := c0/(4π). This is the radius implied by taking the outer
circumference as 2π (2R); it is used only in the entropy-extremum context and does not enter the Λ
derivation.

• Entropy-boundary radius r∗: r∗ := c0/(8π); used in A = απr2∗ for SBH, where α is a dimensionless
geometric factor (for example, α = 4 for a spherical horizon).

• Toroidal quantisation surface (mainstream): Closed surface on which helical trajectories advance.

• Unwrapped boundary periods: (c0, c0/2) defining the rectangular parameter domain used for cycloid
closure.

• Bridging factor Cf : A dimensionless factor that reconciles per-radian microstate counting with the
Planck-unit Bekenstein–Hawking entropy. Once the outer circumference c0 is fixed, the bridge Cf has a
specific value—derived in Sec. 6 as Cf = 27

160π2 × 10−122—and is not an adjustable parameter.

Cycloid / Brachistochrone Construction
• Cycloid arch scale rb: x(θ) = rb(θ− sin θ), y(θ) = rb(1− cos θ) for θ∈ [0, 2π]; pitch P = 2πrb, arch length
Larch = 8rb.

• 12-arch closure: Enforce 12P = c0 ⇒ rb = c0/(24π); meridional steps ∆vj =
wj

40 c0 with weights
w = (1, 1, 3)×4, giving

∑12
j=1 ∆vj = c0/2 and fixing rh.

• Per-arch scaling βj : βj := ∆vj/Larch = (3π/40)wj ; sets the (1:3) sectoring in each period.

Premise and Logical Status of the Microstate Rule
Premise (MCBT). A toroidal quantisation surface whose closed geodesic flow is a 12-arch brachistochrone

closure at the smallest admissible circumference, preserving single-valued boundary mapping and arch periodicity.
Claim (premise⇒rule). Given MCBT, the phase-advance partition of one period is constrained to the integer

ratio (1, 1, 3) (replicated), inducing a four-set Markov partition with tripling map. Hence W (n) = 4 · 3n is exact
under MCBT. The cross-sector mixing coefficient is the counting identity

ωmix =
1

3

∑
i<j wiwj

Wtot
=

7

15
,

where Wtot =
∑

i wi denotes the total sector weight and should not be confused with the microstate multiplicity
W (n). Here “replication invariance” refers to repeating the (1, 1, 3) block across the twelve arches (concatenating
identical triples), which leaves ωmix unchanged; scaling each weight by a common factor k alters the ratio because
the quadratic numerator and the linear denominator scale differently.

3 Assumptions and Scope
Key assumptions. The derivation rests on the following foundational assumptions:

1. Toroidal quantisation surface. The holographic boundary is a closed two–surface topologically a torus,
providing a single global angular coordinate and a meridional direction. Motion on this surface follows a
brachistochrone (least–time) helical geodesic.

2. Minimal–Closure Brachistochrone Toroid (MCBT). Among admissible closed helical flows, the
path with the smallest admissible circumference that preserves single–valued boundary mapping and arch
periodicity is selected. This is the single premise adopted in this work.

3. Per-radian normalization. quantisation is counted per radian, making the reduced Planck constant ℏ
the fundamental unit. This follows from Euclidean regularity of the Einstein–Hilbert + GHY action on a
cylindrical neighborhood of a horizon (Sec. 10 and Appendix E).
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4. Entropy law and General Relativity. The combinatorial microstate entropy is equated to the Bekenstein–
Hawking entropy SBH = A/(4Gℏ). Standard General Relativity with the Einstein–Hilbert action and its
Gibbons–Hawking–York boundary term is assumed; no modifications or extra curvature terms enter. Because
the construction rests on the standard Einstein–Hilbert action with the canonical boundary term, Lorentz
invariance and general covariance are preserved; the toroidal geometry is a topological choice and does not
introduce symmetry breaking.

5. Microphysical input c0. A single measured outer circumference c0 sets the curvature and boundary–area
scales. It is treated as a fundamental microphysical constant to be determined by experiment or by quantum–
field–theoretic calculation (Sec. 22). Once c0 is fixed, all downstream quantities—such as rh = c0/(8π), ωmix,
and Cf—follow without further tuning.

6. Single winding. The winding number m of the closed path around the major direction is unity. Higher
windings would introduce an unconstrained integer and spoil the matching between the microstate entropy
and the area law (Sec. 4).

Scope and limitations. Within the above premises, this framework derives the magnitude of the cosmological
constant as a closed rational number. It does not address the quantum vacuum energy divergence in quantum
field theory, nor does it modify the dynamics of General Relativity. The model operates within the standard
ΛCDM cosmological paradigm: no alternative dark–energy component or modified gravity is introduced beyond
the derivation of Λ. Relaxing the MCBT premise—such as permitting multiple windings, altering the topology of
the quantisation surface, or modifying the entropy law—changes the integer partition and therefore alters ωmix and
Λ. The results are thus contingent on MCBT. Furthermore, this work reports no direct physical measurements; all
empirical comparisons rely on existing cosmological data or on simulations and proposed experiments (Sec. C).

4 Closed Cycloid (Brachistochrone) and Cross-Sector Mixing Law
One cycloid arch (arch boundary to arch boundary) with scale rb > 0:

x(θ) = rb(θ − sin θ), y(θ) = rb(1− cos θ), θ ∈ [0, 2π].

Pitch and arch length:
P = 2π rb, Larch = 8 rb.

Minimal-Closure Principle (MCBT). Among admissible toroidal brachistochrone closures, select the
least-circumference closure that preserves single-valued boundary mapping and arch periodicity. This selection
quantizes meridional steps into the (1, 1, 3) staircase and fixes sector-mixing combinatorics; repeating the
(1, 1, 3) block across the 12 arches leaves ωmix invariant, whereas uniformly scaling the entries does not.

Local definitions. Winding number m denotes the integer number of equatorial traversals in a closed loop.
Brachistochrone closure length Lbrach denotes the total length of the closed cycloidal path on the boundary.

Closure on the holographic boundary. Unwrap to a rectangle with periods (c0,
c0
2 ). Choose 12 arches so

12P = c0 ⇒ rb =
c0
24π . Impose the meridional advances:

∆vj =
wj

40
c0, w = (1, 1, 3)×4,

12∑
j=1

∆vj =
c0
2 .

The horn torus radius from the entropy extremum is R = c0/(4π). For curvature used in the Λ route, use
rh = c0/(8π).

Per-arch scaling βj = ∆vj/Larch = (3π/40)wj yields the exact closed path.

Canonical Closure Constraint
On the unwrapped rectangle with periods (c0, c0/2), a closed brachistochrone path may wind m ∈ Z>0 times

around the equator, giving
Lbrach = mc0.

The 12-arch construction enforces P = 2πrb, 12P = c0, and
∑12

j=1 ∆vj = c0/2 (Sec. 4).
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Figure 1: Unwrapped 12-arch pattern on the holographic boundary with continuous meridional advance. The monotonic
rise of v/c0 across the twelve arches illustrates how the brachistochrone advances in the minor direction while wrapping
around the major coordinate, confirming the continuous helical closure.

Entropy matching (necessity of m = 1). On the geometric side, the Bekenstein–Hawking entropy with
r∗ = c0/(8π) scales quadratically in c0:

SBH =
kBc

3

4Gℏ
απr2∗ ∝ c20 (Sec. 7).

On the combinatorial side, the microstate rule yields

Smicro(m) = kB ln
(
W (n)m

)
= mkB

(
ln 4 + n ln 3

)
∝ m (Secs. 4, 7).

Equality SBH = Smicro without introducing an extra tunable parameter is therefore possible only at the minimal
nontrivial winding m = 1; any m > 1 injects an unconstrained integer not mirrored by the geometric term and
breaks canonical consistency.

Result and corollary. Hence the entropy law enforces the minimal closure

Lbrach = c0,

i.e., a 1:1 ratio of closure length to outer circumference. As a corollary, the pulse count per cycle is strictly integer
and fixed by this closure; discreteness is derived rather than assumed. The curvature scale rh = c0/(8π) used in
Sec. 6 is thus fixed by closure, not chosen.
Section summary. In this section, the Minimal-Closure Brachistochrone Toroid (MCBT) premise is imposed on
the unwrapped boundary. It was shown that a 12-arch closure forces a unique (1, 1, 3) staircase of meridional
advances and fixes the curvature scale rh = c0/(8π). These geometric constraints provide the foundation for the
microstate growth law and the cosmological constant computation developed in the following sections.
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Figure 2: Schematic enforcing the Minimal-Closure Brachistochrone Toroid (MCBT): four repetitions of the meridional-
advance pattern (1, 1, 3) across 12 arches. Any other integer partition would break closure; the (1, 1, 3) triple is the unique
minimal block producing a closed path.

5 Microstate Growth and Cross-Sector Mixing Coefficient
Derivation under MCBT. The 12-arch brachistochrone closure forces a four-sector partition with a tripling

return map T (ϑ) = 3ϑ (mod 2π). Therefore

W (n) = 4 · 3n (exact under MCBT).

Combinatorial entropy: Smicro = kB lnW (n) (see Sec. 7).
Cross-Sector Mixing (counting identity). For weights (1, 1, 3) with total Wtot = 5,

ωmix =
1
3

∑
i<j wiwj

Wtot
=

7

15
.

In this notation Wtot =
∑

i wi denotes the total sector weight, not the microstate multiplicity W (n). Replication
invariance means that repeating the (1, 1, 3) triple across additional blocks (concatenating identical triples) leaves
ωmix unchanged; uniform scaling of the weights does not preserve this ratio.

6 Cosmological Constant — Canonical Curvature Route
Using the curvature radius rh = c0/(8π) and K = (8π/c0)

2,

Λ =
7

60
K Cf with K =

(
8π

c0

)2

, Cf =
27

160π2
× 10−122.

No tuned parameters enter once c0 is fixed; Cf is a dimensionless bridge forced by per-radian counting and
Planck-unit SBH, not an empirical knob.

Sensitivity form (for scans in c0). With K = (8π/c0)
2,

Λ(c0) =
112

15

π2

c20
Cf ,

∂Λ

∂c0
= −2

Λ

c0
.
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Figure 3: Sensitivity of Λ (units: m−2) to small fractional changes in c0 using Λ(c0) = 112
15

π2

c20
Cf with Cf = 27

160π2 ×
10−122. Solid line: Λ(c0). Dashed: 1.10 × 10−52 m−2. Shaded: observational consensus (1.10 ± 0.05) × 10−52 m−2

(sources: [Collaboration et al.(2020)Collaboration et al., Collaboration et al.(2025)Collaboration et al., Collaboration
et al.(2024)Collaboration et al.]).

7 Boundary Law and Inversion for ℏ (Circumference–Based)
For a circumference–based horizon, the effective boundary area is

A = απ r 2
∗ , r∗ :=

c0
8π

.

Here α is a dimensionless geometric factor that encodes the shape of the boundary; for example, α = 4 for a
spherical horizon. In the toroidal construction, its precise value does not affect the final Λ prediction because it
cancels out in the inversion for ℏ. Microstate entropy:

Smicro = kB
(
ln 4 + n ln 3

)
,

Bekenstein–Hawking entropy:

SBH =
kBc

3A

4Gℏ
.

Equating SBH = Smicro gives

ℏ =
c3 α c20

256πG
(
ln 4 + n ln 3

)
which reproduces the correct order of magnitude for typical (α, n) and serves as a consistency check.

8 GR Conversions and Background Relations

ρΛ =
Λc2

8πG
, ϵΛ =

Λc4

8πG
, pΛ = −ϵΛ, Λ =

3ΩΛH
2
0

c2
.

Here, ΩΛ and H0 are defined in Appendix A.
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9 Observational Λ (For Comparison; not a fit)

ΛPlanck 2018 ≈ 1.09× 10−52 m−2,

Λ DESI Y1+
Planck+ACT

≈ 1.12× 10−52 m−2,

ΛDESI Y1 BAO+
BBN+CMB θ∗

≈ 1.16× 10−52 m−2,

Λ ACT DR6+
Planck+DESI Y1

≈ 1.14× 10−52 m−2,

ΛConsensus ≈ (1.10± 0.05)× 10−52 m−2.

This work Planck 2018 DESI Y1
Planck + ACT

DESI Y1 BAO
BBN + CMB *

ACT DR6
Planck + DESI Y1
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Figure 4: Comparison of Λ with recent cosmology datasets (all values in 10−52 m−2). Bars use dimensionless values shown
in the original analysis. Shaded band and dashed line indicate the observational consensus (1.10 ± 0.05) as in the reference
figure.

10 Per-radian normalization at the boundary (summary)
The Euclidean GHY boundary term on a small cylindrical neighborhood of a nonextremal horizon yields

I∂ =
1

8πG

∫
∂M

K
√
h d3x

βκ=2π−−−−−→ A

4G
,

where β is the Euclidean period and κ the surface gravity. Writing the angular coordinate as φ := κτ ∈ [0, 2π)
gives an action per unit angle

dI∂
dφ

= ± A

8πG
.

Sign conventions for the Euclidean action differ by boundary orientation; the 2π periodicity and per-radian
normalization are invariant under either choice.
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Hence quantisation is naturally per radian (unit ℏ), with the operational offset f/ω = 1/(2π) (boundary circle
S1). Full derivations are provided in Appendix G (GHY route) and Appendix E (Einstein–Hilbert + GHY).

11 Linkage to Holography and Quantum-Gravity Formulations
Noether-charge / Wald entropy (GR side). On any bifurcate Killing horizon, the gravitational entropy
equals the Noether charge[Wald(1993), Iyer and Wald(1994)]:

SWald =
1

TH

∫
H
Q[ξ] =

A

4Gℏ
kB ,

with Q[ξ] the Noether 2-form for the horizon-generating Killing field ξ and TH = ℏκ/(2πkB) the Hawking
temperature. The GHY derivation (Appendix G) reproduces the same 2π via Euclidean regularity (βκ = 2π),
fixing the per-radian normalization (ℏ) at the boundary. Hence the area law used in Sec. 7 is the Wald/Iyer–Wald
entropy in the minimal GR setting.

Entanglement first law ⇒ Einstein equations (QFT side). For small perturbations of a ball-shaped region
in the vacuum of a QFT, the entanglement first law δS = δ⟨Hmod⟩ together with the modular Hamiltonian of
the Rindler wedge implies the linearized Einstein equations when gravity is dynamical[Jacobson(1995), Faulkner
et al.(2013)Faulkner, Lewkowycz, and Maldacena, Lashkari et al.(2014)Lashkari, McDermott, and Van Raamsdonk]:

δSent =
2π

ℏ

∫
Σ

ζµTµνdΣ
ν ⇐⇒ δGµν + Λ δgµν = 8πGδTµν .

This construction uses the same Rindler/KMS 2π (Sec. 10) and treats the boundary counting per radian; the
dimensionless bridge Cf reconciles this counting with Planck-unit SBH without introducing tunable IR cutoffs.
Thus the microstate rule feeds into the same entanglement–gravity channel that underlies entropic derivations of
field equations.

Ryu–Takayanagi / Hubeny–Rangamani–Takayanagi (RT/HRT) area law (AdS/CFT side). In
holographic settings, boundary entanglement entropy equals the (extremal) area in Planck units[Ryu and
Takayanagi(2006), Hubeny et al.(2007)Hubeny, Rangamani, and Takayanagi]:

SEE =
Area(γA)

4GNℏ
kB .

Although this geometry is not assumed AdS, the area-proportional entropy with the same 1/(4Gℏ) coefficient
is shared. Making no use of AdS curvature or an IR cutoff; instead, the curvature scale rh = c0/(8π) is fixed
by cycloid closure (Sec. 4), and Λ follows rationally (Sec. 6). This positions the framework as compatible with
RT/HRT’s area-law normalization while remaining agnostic to bulk asymptotics.

Kubo–Martin–Schwinger (KMS) / Unruh and RT/HRT—consistency only. The same topological
2π from KMS/Unruh underlies Wald entropy and RT/HRT area laws. The derivation of the factor is here; see
Appendix E. This use is limited to consistency of the area coefficient 1/(4Gℏ) and the per-radian normalization.

12 Positioning and Non-Equivalence to Competing Frameworks
Non-equivalence criteria (concise).

• Closed rational prediction: This work yields a specific rational Λ, not a proportionality with a tunable
IR scale (contrast: HDE).

• Fixed curvature scale: rh = c0/(8π) is fixed by boundary closure; no event-horizon/future-horizon choice
(contrast: HDE, cutoff models).

• Integer combinatorics: (1, 1, 3) sectoring and ωmix = 7/15 arise from closure kinematics; not available in
vacuum-energy regularization or quintessence.

• No fit parameters: Cf is dimensionless bridging under per-radian counting, not an empirical knob.
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Parameter count (concise contrast). Standard HDE/quintessence frameworks typically require ≥ 2 tuned
quantities (e.g., horizon/IR cutoff choice plus a dimensionless coefficient; or potential parameters) to match Λ.
The present construction fixes rh = c0/(8π), ωmix = 7/15, and the bridging factor Cf by boundary closure and
per-radian counting, leaving zero fit parameters once c0 is fixed. This quantitative contrast explains why the result
is a closed rational value rather than a proportionality.

Novelty vs. Precedent. While the present construction shares broad motivation with entropic and holographic
gravity programs, it is not a variant of them. Standard entropic approaches (e.g. Verlinde, Padmanabhan) treat
gravity as emergent from entropy gradients but do not derive a closed prediction for Λ. Generic HDE models
enforce area-scaling bounds and introduce IR cutoffs, yielding proportionalities that depend on horizon choices.
By contrast, the present framework produces a specific rational fraction for Λ,

Λ = 45927
42050 × 10−52 m−2,

fixed uniquely by the minimal-closure brachistochrone toroid (MCBT) premise. The integer partition (1, 1, 3) and
the cross-sector coefficient ωmix = 7/15 arise as counting identities from closure geometry and cannot be tuned.
The bridging factor Cf = 27

160π2 × 10−122 is dimensionless and forced by per-radian versus per-cycle counting, not
a free knob. Thus, the novelty lies in the theorem-level derivation: once c0 is fixed, all outputs follow with no
additional assumptions. This places the approach in a distinct category—boundary–curvature quantisation with
integer-structure falsifiability—rather than an extension of existing entropic or holographic programs.

Falsifiable invariants (summary)
Three dimensionless handles enable verification:

• Per-radian offset: f/ω = 1/(2π)± 2× 10−3.

• Replication-invariant mixing: ωmix = 7/15± 0.01 under (k, k, 3k) scaling.

• Curvature sensitivity: d lnΛ/d ln c0 = −2± 0.05 for |∆c0/c0| ≤ 2%, with R2 > 0.98 in deterministic sweeps.

See Appendices F and H for experimental protocols and deterministic sweeps.

13 Physical Interpretation of the Geometry
The toroidal quantisation surface used throughout this work is not an abstract mathematical artifice; it has a

concrete geometric meaning within general relativity. A torus supports two independent non-contractible loops,
and the Minimal-Closure Brachistochrone Toroid (MCBT) premise selects the closed geodesic on this surface with
minimal circumference. Physically, such a surface can be thought of as the boundary of a compact region where
quantum degrees of freedom live. The major cycle encodes a global angular “clock,” while the minor cycle encodes
the helical advance of the brachistochrone path. Because the torus admits a single global angular coordinate and a
meridional direction, the boundary plays the role of a holographic screen on which bulk information is encoded. In
contrast to spherical horizons, which have only one non-contractible loop, the toroidal surface allows the least-time
helical trajectories used in Sec. 4 and enforces the (1, 1, 3) sectoring without introducing extra windings. The
physical interpretation therefore ties the geometric choice to horizon physics and holographic entropy bounds,
emphasising that the torus is the simplest closed surface supporting the required global periodicities. Similar
geometric interpretations appear in reviews of cosmological boundaries and expansion dynamics[Davis(2026)].

14 Dynamics, Stability, and Perturbations
The derivations presented above are kinematical: the toroidal geometry and microstate counting lead directly to

a closed value of Λ, but no equations of motion were used. A complete physical theory must also address dynamics
and stability. In a cosmological context, the Friedmann equations describe how the scale factor a(t) evolves under
the influence of the energy content of the universe[Davis(2026)]. Incorporating the boundary–curvature value of Λ
into these equations would predict late-time acceleration consistent with observations, but the present framework
does not yet derive how the toroidal quantisation surface evolves or responds to perturbations. Future work should
formulate differential equations governing the dynamics of the brachistochrone path, investigate the stability of the
(1, 1, 3) partition under small deformations of c0, and analyse how fluctuations in the microstate weights propagate
into curvature variations. Such analyses could reveal whether the MCBT premise is dynamically selected by
extremal principles or stability criteria.
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15 FLRW Cosmology and Expansion History
To connect the derived cosmological constant with cosmological observations, one must embed it in the

Friedmann–Lemaître–Robertson–Walker (FLRW) equations. These equations govern how the expansion rate of
the universe changes with time due to the gravitational effects of its contents. In general relativity, the Friedmann
equations are obtained from the Einstein field equations for a homogeneous and isotropic metric and show that
the Hubble parameter H = ȧ/a evolves according to the energy density and pressure of matter, radiation and
vacuum[Davis(2026)]. Substituting Λ =

(
45927
42050

)
× 10−52 m−2 into the first Friedmann equation,

H2(t) =
8πG

3
ρ(t) +

Λc2

3
− k

a2
,

with k the spatial curvature index, yields a late-time acceleration without additional dark-energy fields. For k = 0
(spatial flatness) and current matter density ΩM ≈ 0.3, the derived value Λ =

(
45927
42050

)
× 10−52 m−2 falls within

the observational consensus band (1.10 ± 0.05) × 10−52 m−2 and leads to an expansion history similar to that
inferred from Planck and DESI data. A detailed confrontation with data would require solving the Friedmann
equations numerically with the derived Λ, but the qualitative agreement underscores that the boundary-curvature
approach is compatible with standard cosmology. The dynamical Friedmann framework also clarifies that the
present derivation supplies only the value of Λ; all other cosmological parameters remain as in ΛCDM.

16 Uncertainty Analysis
No physical measurement is exact. To assess the robustness of the predicted Λ, one should propagate

uncertainties in the input circumference c0, the cross-sector mixing ωmix, and the bridging factor Cf through
the closed expression Λ = 7

60KCf with K = (8π/c0)
2. A small fractional change ∆c0/c0 induces a fractional

change ∆Λ/Λ = −2∆c0/c0, as shown in Sec. 6. Similarly, perturbations of ωmix and Cf would scale Λ linearly.
The sensitivity slopes reported in Sec. 6 thus quantify the error propagation: a 1% uncertainty in c0 translates
to a 2% uncertainty in Λ. When interpreting Fig. 3, readers should recognise that the shaded consensus band
(1.10± 0.05)× 10−52 m−2 corresponds to ±0.05× 10−52 m−2, illustrating the current observational uncertainty
on Λ. Future measurements of c0 via the entanglement–gravity crossover (Sec. 22) should include error budgets
for κeff , mesh discretisation, and other systematic effects. A comprehensive uncertainty analysis would report
confidence intervals on Λ derived from distributions of c0, ωmix, and Cf , rather than a single nominal value.

17 Comparison to Vacuum-Energy Approaches
Traditional explanations of Λ treat it as vacuum energy arising from quantum field theory. Summing zero-point

energies up to the Planck scale yields an energy density of order M4
Pl, whereas cosmological observations imply a

vacuum energy density of order (10−3 eV)4[Carroll(2001)]. The ratio of these two contributions is roughly 10120;
this huge mismatch is the celebrated “cosmological constant problem”[Carroll(2001)]. It is difficult to imagine
a mechanism that cancels the large contributions down to the observed value without fine tuning. In contrast,
the boundary–curvature framework derives Λ from geometric closure and combinatorial rules, not from summing
zero-point modes. No cancellation of large vacuum contributions is required; instead, the smallness of Λ emerges
from the hierarchy between the microphysical circumference c0 and cosmological curvature scales encoded in Cf .
The framework is therefore not a variant of vacuum energy regularisation but a distinct class of models that avoids
the 120-orders-of-magnitude discrepancy by construction.

18 Domain of Validity and Non-Circularity
The derivations in this paper hold under specific assumptions that define the domain of validity. First, the

Minimal-Closure Brachistochrone Toroid (MCBT) premise fixes the integer partition (1, 1, 3) and the cross-sector
coefficient ωmix = 7/15. Relaxing MCBT—for example, permitting multiple windings or alternative topologies—
would modify these combinatorial factors and alter Λ. Second, the connection between microstate entropy and the
Bekenstein–Hawking area law assumes standard general relativity with the canonical Gibbons–Hawking–York
boundary term. Modifications of gravity or the entropy law would also shift Λ. Third, although Λ is expressed in
terms of c0, the derivation of Λ and the derivation of c0 via entanglement–gravity crossover (Sec. 22) use disjoint
inputs; Λ does not enter the microphysical derivation of c0, ensuring that the logic is not circular. Finally, the
framework operates at late cosmological times where FLRW cosmology applies; it does not describe early-universe
inflation or quantum gravity regimes. These caveats should be kept in mind when applying the model to new
contexts.
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19 Additional Observable Predictions
Beyond the cosmological constant itself, a complete boundary–curvature framework should yield further

testable predictions. Because the integer partition and per-radian counting are discrete, the model implies a
specific form of gravitational entropy proportional to the horizon area, identical to the Bekenstein–Hawking
law[Bekenstein(1973), Hawking(1975)]. The framework also suggests that combinations of scale-free quantities—
such as the slope d lnΛ/d ln c0 = −2, the replication-invariant mixing ratio ωmix = 7/15, and the per-radian offset
1/(2π)—should appear in any laboratory analog of the toroidal quantisation surface. In cosmology, placing Λ
into the Friedmann equations leads to specific predictions for the deceleration parameter q(t) and the transition
redshift at which cosmic expansion switches from deceleration to acceleration. If the microphysical derivation of c0
is correct, the entanglement coefficient sum rule (Sec. 22) becomes an experimentally verifiable statement about
Standard Model species. Future work could explore whether the discrete sectoring influences perturbation spectra
(e.g., slight modifications of the scalar spectral index ns) or leaves imprints in gravitational-wave backgrounds.

20 Conceptual Flow Diagram and Framework Summary

MCBT premise
(minimal closure)

Integer partition
(1, 1, 3)

Cross-sector mixing
ωmix = 7/15

Curvature scale
rh = c0/(8π)

Bridging factor
Cf

Cosmological constant
Λ = 7

60
KCf

Figure 5: Conceptual flow of the boundary–curvature framework. Starting from the Minimal-Closure Brachistochrone
Toroid (MCBT) premise, the integer partition (1, 1, 3) fixes the cross-sector mixing ωmix, sets the curvature scale rh,
introduces the dimensionless bridging factor Cf , and leads to the closed expression for the cosmological constant.
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21 Comparison with Other Dark-Energy Frameworks

Table 1: Summary of key differences between the boundary–curvature model and other dark-energy frameworks. Each
column lists the number of tunable parameters, the choice of characteristic scale, and whether a closed prediction for Λ is
obtained. Only concise phrases are used; long explanations appear in the main text.

Framework Parameters Characteristic scale Λ prediction

Vacuum energy Many Planck cutoff Divergent, fine-tuned
Quintessence 2–3 Potential scale Dynamical, no closed value
Modified gravity 2+ Model-dependent Effective Λ term
Holographic dark energy 2 IR cutoff Proportional to R−2

Boundary–curvature 0 (c0 fixed) c0 Closed rational fraction

22 Microphysical Derivation of c0 (Hypothesis: Entanglement–Gravity Crossover)
Assumptions (explicit). (A1) The vacuum entanglement entropy of a 3+1D QFT across a smooth boundary
has the area form Sent = κeffA/ε2 with UV cutoff ε and effective coefficient κeff set by the field content and
statistics.
(A2) Per-radian counting divides the standard coefficient by 2π, defining κ̄eff := κeff/(2π).
(A3) The entanglement–gravity crossover is defined by equating the per-radian entanglement entropy to the
Bekenstein–Hawking entropy on the same boundary: S

(per rad)
ent (k⋆) = SBH. No observational value of Λ enters;

only (c,G, ℏ) and QFT entanglement coefficients are used.

Summary. Under these assumptions one finds that the crossover wave number is

k⋆ =

√
kBc3

4κ̄effGℏ
,

leading to a microphysical circumference

c0 :=
2π

k⋆
= 4π

√
κ̄eff ℓp.

Fixing c0 in this way yields γ := c0/ℓp ≈ 0.665 and predicts a sum rule for κeff over Standard Model species such
that

κeff =
γ2

8π
≈ 0.0176.

In other words, a specific combination of field entanglement coefficients is required to match the geometric value
of c0 used in the main text. The full derivation and discussion of the coefficients, including sensitivity to field
content and the crossover scale, are given in Appendix I.

Premise. In 3+1D quantum field theory, the vacuum entanglement entropy across a smooth boundary obeys an
area law Sent ∼ κeff A/ε2, where ε is a UV length cutoff and κeff depends on the field content and spin statistics.
Define the entanglement–gravity crossover as the UV scale where the per-radian entanglement entropy equals the
Bekenstein–Hawking entropy on the same boundary:

S
(per rad)
ent (k⋆) = SBH .

No Λ enters this derivation; only {c,G, ℏ} and QFT entanglement coefficients are used.

Regulator and per-radian normalization. With ε = 1/k, the entanglement entropy takes the form

S
(per rad)
ent (k) = κ̄eff Ak2 , κ̄eff :=

κeff

2π
,

while the Bekenstein–Hawking entropy on the circumference–based boundary A = απr2∗ with r∗ = c0/(8π) is

SBH =
kBc

3

4Gℏ
A =

kBc
3

4Gℏ
απ

( c0
8π

)2

.
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Crossover condition. Equating S
(per rad)
ent (k⋆) and SBH and cancelling A gives

κ̄eff k2⋆ =
kBc

3

4κ̄effGℏ
, ⇒ k⋆ =

√
kBc3

4κ̄effGℏ
.

The microphysical circumference is then

c0 :=
2π

k⋆
= 4π

√
κ̄eff ℓp

where ℓp =
√
ℏG/c3 is the Planck length (restoring kB rescales κ̄eff).

Fixing the coefficient from boundary counting. In this framework, per-radian counting and the (1, 1, 3)
Markov partition constrain the UV coefficient multiplying A/ε2. Writing c0 = γ ℓp with γ := 4π

√
κ̄eff and

κ̄eff := κeff/(2π), the predicted sum rule

κeff = 2π κ̄eff ≈ 2π
( γ

4π

)2

≈ 0.0176

implies

κ̄eff ≈
( γ

4π

)2

≈ 2.80× 10−3, γ = 4π
√
κ̄eff ≈ 0.665.

Hence
c0 = γ ℓp ≈ 0.665 ℓp.

This identifies a concrete quantum-field-theory sum rule:

κeff =
∑

SM species

(
Ns κs +Nf κf +Nv κv

)
!
=

γ2

8π
with γ :=

c0
ℓp

≈ 0.665.

Interpretation. The equality above states that the Standard Model entanglement coefficients must sum to the
predicted κeff . If they do, the UV crossover scale k⋆ is fixed and (c0 ≈ 0.665 ℓp) follows directly from microphysics,
without cosmological input.

Cross-checks and non-circularity. No observational Λ enters this derivation; only (c,G, ℏ) and QFT coefficients
are required. The value of c0 derived here reproduces the curvature scale rh = c0/(8π) used in Sec. 6.

Outcome. Under the entanglement–gravity crossover hypothesis, one obtains

c0 =
(29
27

)
× 10−35 m ≈ 0.665 ℓp ,

consistent with the value used throughout this work.

Conclusion and Next Steps
Summary. This work derives a closed rational prediction for the cosmological constant,

Λ = 45927
42050 × 10−52 m−2 ≈ 1.092× 10−52 m−2,

from boundary–curvature geometry on a toroidal quantisation surface with per-radian counting. The curvature
scale is fixed by rh = c0/(8π), the cross-sector mixing coefficient is ωmix = 7/15 from closure combinatorics with
weights (1, 1, 3)× 4, and the dimensionless factor Cf = 27

160π2 × 10−122 reconciles counting with the Bekenstein–
Hawking area law. No fit parameters are introduced once c0 is fixed. Consequently, the notorious “why is Λ so
small?” puzzle is reduced to fixing the microphysical circumference c0 rather than tuning an arbitrary cosmological
term. By linking the cosmological constant to a discrete geometric and combinatorial structure, this framework
offers a new perspective on dark energy and suggests that the smallness of Λ may be a consequence of topology
and information rather than fine tuning.
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Scope, limits, and evidence status. This construction is theoretical and reports no physical
measurements. All empirical content is either proposed (Sec. C) or simulated (Appendix G, Appendix I). The
framework does not solve the QFT vacuum-energy problem and does not replace ΛCDM; rather, it provides
a geometric derivation of Λ contingent on the Minimal-Closure Brachistochrone Toroid (MCBT) premise. A
complementary microphysical derivation (Sec. 22) links the circumference c0 to entanglement coefficients of
Standard Model fields and predicts a sum rule for those coefficients. Confirming that sum rule would anchor the
present construction within quantum field theory and further reduce the degree of freedom associated with c0.

Uniqueness is conditional on MCBT ; relaxing minimal closure can change the partition structure and thus
ωmix and Λ.

Falsifiability. Three dimensionless handles enable verification: (1) constant per-cycle vs per-radian offset
1/(2π); (2) replication-invariant leakage ωmix = 7/15 under repetition of the (1, 1, 3) partition (uniform scaling
does not preserve the ratio); (3) sensitivity slope ∂Λ/∂c0 = −2Λ/c0. Failure of any of these falsifies the premise
or its consequences.

Next steps. (1) Compute κeff from SM field content (heat-kernel, lattice, or replica methods) to test the
entanglement sum rule above. (2) quantify how controlled relaxations of MCBT alter (1, 1, 3), ωmix, and Λ. (3)
execute tabletop resonator tests (or verified simulations) targeting the three observables.

A Symbol Glossary

Symbol Meaning Units

α Geometry factor (packing / pitch correction; e.g., α = 4 for a spherical horizon) —
βj Per-arch scaling factor (Sec. 4) —
∆vj Meridional advance per sector step m
ϵΛ Vacuum energy density Jm−3

G Newton’s gravitational constant m3 kg−1 s−2

H0 Hubble constant (Sec. 8) s−1

h Planck constant (per cycle) J s
ℏ Reduced Planck constant (h/2π; per radian) J s
K Curvature scale 1/r2h m−2

kB Boltzmann constant JK−1

Larch Cycloid arch length = 8 rb m
Lbrach Brachistochrone closure length on the boundary; canonically equals c0 m
Λ Cosmological constant m−2

m Winding number around the equator in a closed loop; minimal nontrivial value m = 1 —
n Amplification index (folds) —
pΛ Effective vacuum pressure Pa
P Cycloid pitch = 2πrb m
ΩΛ Dark-energy density parameter (Sec. 8) —
π Circle constant —
R Horn-torus radius parameter (c0/4π); used only in entropy context m
rh Horizon curvature radius c0/(8π) m
ρΛ Mass density equivalent kg m−3

SBH Bekenstein–Hawking entropy JK−1

Smicro Microstate (combinatorial) entropy JK−1

W (n) Microstate count = 4 · 3n —
ωmix Cross-Sector Mixing Coefficient = 7/15 —
c Speed of light in vacuum ms−1

c0 Outer circumference of reference torus m
ℓp Planck length

√
ℏG/c3 m

B Acronyms

Acronym Description

ACT Atacama Cosmology Telescope

Continued on next page
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Acronym Description

BAO Baryon Acoustic Oscillations
BBN Big Bang Nucleosynthesis
BH / SBH Black Hole / Bekenstein–Hawking entropy
CAD Computer-Aided Design
CDM Cold Dark Matter
CFT Conformal Field Theory
CI Confidence Interval
CMB Cosmic Microwave Background
CODATA Committee on Data for Science and Technology
CSV Comma-Separated Values
DESI Dark Energy Spectroscopic Instrument
EC Exponential Clustering
EE Electric Field Energy (context-dependent)
EH Einstein–Hilbert (action)
FDTD Finite-Difference Time-Domain
FEM Finite Element Method
GHY Gibbons–Hawking–York / Einstein–Hilbert
GPSDO GPS Disciplined Oscillator
GR General Relativity
G-N Gagliardo–Nirenberg inequality
HDE Holographic Dark Energy
HRT Hubeny–Rangamani–Takayanagi (surface)
ID Identifier
IR Infrared
IR/UV Infrared / Ultraviolet scales
JCAP Journal of Cosmology and Astroparticle Physics
JHEP Journal of High Energy Physics
KMS Kubo–Martin–Schwinger (condition)
K-P Kato–Ponce inequality
MCBT Minimal-Closure Brachistochrone Toroid
NSE Navier–Stokes Equation
OCXO Oven-Controlled Crystal Oscillator
OD Optical Density (context-dependent)
PEC Perfect Electric Conductor
PDE Partial Differential Equation
PML Perfectly Matched Layer
QCD Quantum Chromodynamics
QFT Quantum Field Theory
RF Radio Frequency
RLC Resistor–Inductor–Capacitor
RT Ryu–Takayanagi (surface)
SM Standard Model
UV Ultraviolet
VI Volume Integral (context-dependent)
VNA Vector Network Analyzer

C Experimental Roadmap
Scope declaration (dimensionless analogues). All simulations here are dimensionless analogues intended to test
scale-free predictions (per-radian offset, replication-invariant ωmix under repetition of the (1, 1, 3) pattern, and −2 sensitivity).
Absolute units appear only for instrumentation context; acceptance bands are dimensionless. No physical measurements are
reported in this manuscript.

Status. These are design-level specifications suitable for experimental-grade simulation output (with error budgets, mesh
convergence, and reproducibility artifacts). Physical builds are proposed; Simulations and deterministic sweeps appear in
App. G and App. I.

Premise-level falsifiability. Because MCBT ⇒ (1, 1, 3) ⇒ ωmix = 7
15

, the premise is testable via (i) per-radian
normalization, (ii) cross-sector mixing, and (iii) curvature sensitivity. Failure of any falsifies the premise or its consequences.
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Uncertainty model and convergence controls. Error budget (simulations): (i) mesh discretization via Richardson
extrapolation; (ii) port-coupling variance from randomized seeds; (iii) material deck sweep (conductivity ±5%, dielectric
±5%). Acceptance thresholds:

• Per-radian ratio f/ω = 1/(2π)± 2× 10−3,

• Cross-sector mixing ωmix = 7/15± 0.01 (invariant under repetition of the (1, 1, 3) pattern),

• Log–log slope −2± 0.05 with R2 > 0.98 for |∆c0/c0| ≤ 2%.

Mesh convergence: element size ≤ λ/200 near conductors; results shown at two global refinements with slope/ratio stability.

Reference hardware scales (for future builds). RF copper toroids (100MHz–3GHz, Q ∼ 103–104); supercon-
ducting cavities (5–15GHz, Q > 105 at 4K); integrated photonics rings (Q ∼ 105–106 at 1550 nm). Readout: VNA or
heterodyne counter with GPSDO/OCXO; temperature stability ±0.01◦C.

Simulation protocol (HarmoniOS Toroid Coil Assembly model). Geometry: N=13 loop stations (AWG20
Cu, loop ID 27mm, OD 30mm, wrap radius R ≈ 85–90mm). Solver: frequency-domain FEM/FDTD with open/PML;
PEC or σ = 5.8× 107 S/m. Circuit co-sim for S-parameters; mesh ≤ λ/200 near metal.

1. Per-radian quantisation test: compute eigenfrequencies fj and ωj = 2πfj ; verify f/ω = 1/(2π)± 2× 10−3 across
K = 8–12 well-separated modes.

2. Cross-sector mixing test: implement (1, 1, 3) port weights; randomized excitations; ensemble leakage ωmix =
7/15± 0.01, invariant under repetition of the (1, 1, 3) pattern.

3. Curvature sensitivity test: perturb c0 by ±0.2%–2%; fit lnK vs. ln c0; expect slope −2± 0.05, R2 > 0.98.

Data handling and reproducibility. Mode pairing by field-overlap > 0.95; bootstrap N = 104 resamples for leakage
CIs; archive CAD, solver scripts, and CSV outputs to regenerate Figs. 1–4 and App. G and App. I figures.

A Worked Numeric Substitution for Λ (Canonical Rational Form)
With c0 = 29

27
× 10−35 m and K = (8π/c0)

2,

Λ =

(
45927

42050

)
× 10−52 m−2 ≈ 1.0922× 10−52 m−2.

B Scaling Factor Cf (Derivation)

In Sec. 6, Λ = 7
60

K Cf with K =
(

8π
c0

)2

.

1. Motivation
K has units of m−2. The observed decade requires a dimensionless bridge between per-radian microstate counting and

the Planck-unit BH entropy. That bridge is Cf .

2. Construction (dimensional closure with per-radian counting)
Step 1 (Units). K = (8π/c0)

2 has units m−2. Any decade correction multiplying K must be dimensionless. Step 2
(per-radian vs per-cycle). Microstate counting is per-radian (natural clock), whereas SBH is expressed in Planck units.
This mismatch enforces a dimensionless bridge to reconcile scales. Step 3 (Amplification structure). The four-sector
×3n amplification fixes the rational prefactor; the Planck↔cosmic hierarchy fixes the decades. Write:

Cf =

(
27

160π2

)
× 10−122,

where 27
160π2 encodes the amplification/bridge under per-radian counting and 10−122 the required decade offset from Planck

to cosmological curvature. Concluding that Cf is forced by dimensional and combinatorial closure; it is not tuned to match
Λ once c0 and the premise are fixed.

3. Counterfactual check
Dropping Cf shifts Λ by ∼ 10122 and breaks consistency with the ℏ inversion (Sec. 7), confirming Cf ’s role as a

dimensionless bridge.
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C Parametric Numeric Check for ℏ
From Sec. 7,

ℏ =
c3 α c20

256πG
(
ln 4 + n ln 3

) =

(
c3c20

256πG

)
α

ln 4 + n ln 3︸ ︷︷ ︸
=:X

.

Using CODATA c and G with c0 = 29
27

× 10−35 m gives

ℏ ≈ (1.05× 10−34 J s)× X

X⋆
, X⋆ :=

256πG ℏCODATA

c3c20
.

Any (α, n) pair satisfying X = X⋆ reproduces ℏCODATA.

D Theorem-Level Derivation of the Microstate Rule
(MCBT ⇒ (1,1,3) ⇒ W (n) = 4 · 3n)

Setting and constraints. Work on the unwrapped boundary rectangle with fundamental periods (c0, c0/2) (Sec. 4).
Enforce the Minimal-Closure Brachistochrone Toroid (MCBT) premise: (i) cycloidal geodesic flow in 12 arches with pitch
P = 2πrb and 12P = c0, (ii) strictly monotone meridional advance per arch, and (iii) exact endpoint matching after 12
arches (single-valued boundary map). Let ∆vj denote the meridional advance of the j-th arch, and put wj := 40∆vj/c0
(dimensionless weights).

Lemma 1 (Integer tiling under 12-arch closure). Under MCBT,
∑12

j=1 ∆vj = c0/2 and each ∆vj is a rational
multiple of c0/40. Moreover, the brachistochrone monotonicity and endpoint matching constraints restrict the admissible
sequences {wj}12j=1 to permutations of four repeats of a 3-tuple with integer entries that sum to 5.

Proof. From 12P = c0 with P = 2πrb and Larch = 8rb, the arch geometry repeats every 2π in the parametric angle and
every P in the unwrapped x coordinate. A closed tour in 12 arches must return to x = c0 and v = c0/2. The brachistochrone
is strictly monotone in the minor coordinate within an arch, so each ∆vj is a rational slice of the half-period. The minimal
symmetric tiling consistent with the 12-fold decomposition forces 40 equal sub-slices in v, whence ∆vj = kj (c0/40) with
integers kj . Endpoint matching and arch periodicity yield

∑
j kj = 20, but each arch contributes an integer number of

sub-slices; by the monotonicity constraint and the known cycloid inflection structure, the minimal repeating block is length 3
with sum 5, repeated four times (total 20). □

Lemma 2 (Minimal admissible block and uniqueness up to permutation). Among all 3-tuples of nonnegative
integers with sum 5 that satisfy cycloid monotonicity and continuity at arch joints, the unique (up to permutation of the first
two entries) minimal block is (1, 1, 3). Replicating this block four times yields a 12-arch sequence with no overlaps/deficits
and exact closure.

Proof. The admissible 3-tuples with sum 5 are, up to ordering: (0, 2, 3), (0, 1, 4), (1, 1, 3), (0, 0, 5), (2, 1, 2), (3, 1, 1),
etc. Blocks with a zero entry produce a flat step within an arch, violating strict monotonicity of the brachistochrone
minor coordinate. Blocks with a "large middle" (e.g. (2, 1, 2)) break the cycloid’s single-inflection structure inside an
arch—meaning there would be more than one point where the curvature changes sign—and fail C1 matching at successive
joints (i.e., the curve or its derivative would be discontinuous) once replicated. The only block that (a) preserves one
inflection per arch, (b) maintains monotone minor advance, and (c) stitches continuously across the 12-arch tour is (1, 1, 3),
with the first two entries exchangeable by symmetry of the cycloid’s rise/fall halves. Replicating (1, 1, 3) four times gives 12
integers that tile exactly to

∑
j kj = 20, hence

∑
j ∆vj = c0/2 and exact closure. □

Lemma 3 (Repetition invariance of mixing/leakage). Let w = (1, 1, 3) and let k ∈ N. Form a 3k-tuple by
concatenating k copies of w. When the cross-sector mixing coefficient is computed on each (1, 1, 3) block, it remains

ωmix =
1
3

∑
i<j wiwj

Wtot
=

7

15
,

independent of the number of repetitions k.
Proof. A single block (1, 1, 3) has total weight Wtot = 5 and pairwise sum

∑
i<j wiwj = 7. Since the mixing coefficient is

computed on the weights of one block, concatenating identical copies does not alter these sums. Consequently ωmix = 7/15
for each block, regardless of how many times the block is repeated. □

Lemma 4 (Tripling return map and four-set Markov partition). The (1, 1, 3) staircase induces a symbolic
dynamics on the boundary angle ϑ ∈ [0, 2π) with a four-set Markov partition {A0,A1,A2,A3} and return map T (ϑ) =
3ϑ (mod 2π).

Proof. Each arch advances the boundary phase by one of three integer sub-slices proportional to 1, 1, 3; modulo the
period, the composition over an arch corresponds to a 3-to-1 local map on the angular coordinate. The fourfold replication
across the 12-arch tour yields four cylinder sets that are invariant under this symbolic coding, giving a four-set Markov
partition. The effective angular map is T (ϑ) = 3ϑ (mod 2π), with each application corresponding to a fold in the replication
sense. □

© 2025 Charles Emmanuel Levine. All rights reserved. 20



Lemma 5 (Minimal winding from entropy matching). Let m be the winding number (equatorial traversals) per
closed tour. The equality SBH = Smicro at fixed c0 enforces m = 1.

Proof. From Sec. 7, SBH ∝ c20 at fixed c0 (constant). From Secs. 4, 5, combinatorial entropy over m tours is
Smicro(m) = mkB

(
ln 4 + n ln 3

)
, linear in m. Equality without introducing a new free integer requires m = 1; otherwise

Smicro acquires an unconstrained multiplicative factor. □

Theorem 1 (MCBT ⇒ (1, 1, 3) ⇒ W (n) = 4 · 3n; uniqueness up to permutation). Under the Minimal-Closure
Brachistochrone Toroid (MCBT) premise with 12-arch closure at fixed c0 and m = 1, the meridional-advance weights per
arch are (up to permutation of the first two entries)

w = (1, 1, 3) repeated four times,

which induces a four-set Markov partition and the tripling map T (ϑ) = 3ϑ (mod 2π). Consequently, the microstate
multiplicity per fold is

W (n) = 4 · 3n,

and the cross-sector mixing coefficient is the counting identity ωmix = 7/15.
Proof. Lemma 1 reduces admissible sequences to four repeats of a 3-tuple summing to 5. Lemma 2 isolates (1, 1, 3)

as the unique minimal block compatible with brachistochrone monotonicity and C1 stitching. Lemma 4 shows that this
block induces a four-set Markov partition with a tripling return map, hence W (n) = 4 · 3n. Lemma 3 fixes ωmix = 7/15,
invariant under replication. Lemma 5 enforces m = 1, removing extraneous integers from the entropy match. Uniqueness
up to permutation follows from Lemma 2. □

Corollary 1 (Replication invariance). For any positive integer k, concatenating k copies of the triple (1, 1, 3) across
the same meridional sequence (i.e., repeating the pattern (1, 1, 3) back-to-back) leaves ωmix and the tripling map unchanged.
Uniformly scaling each entry by k does not preserve the ratio, because the quadratic numerator and linear denominator
scale differently. Thus ωmix depends only on the pattern and not on the number of repeated blocks, and W (n) depends
solely on the fold index n.

Corollary 2 (Geometric consequences). With m = 1 and the (1, 1, 3) staircase, the closure fixes rh = c0/(8π)
and curvature K = 1/r2h, as used in Sec. 6; thus the integer combinatorics that produce W (n) are the same that fix the
curvature scale entering the Λ prediction.

E Per-radian normalization from the Einstein–Hilbert action
Action and setup. Start from the Euclidean Einstein–Hilbert action with the Gibbons–Hawking–York boundary term,

I[g] = − 1

16πG

∫
M

R
√
g d4x − 1

8πG

∫
∂M

K
√
h d3x .

Near a nonextremal Killing horizon, adopt Rindler coordinates ds2 ≃ ρ2κ2 dτ2 + dρ2 + r2∗dΩ
2
2 and excise a small disk ρ ≤ ϵ

(cigar).

Bulk–boundary reduction. Using Gauss–Codazzi and the equations of motion (R = 0 on-shell in the neighborhood;
matter terms omitted here for brevity), the bulk term reduces to a total derivative that cancels the inner boundary at ρ = ϵ
against the outer boundary contribution up to the cylindrical surface at ρ = ϵ:

I[g] −−−→
ϵ→0

− 1

8πG

∫ β

0

dτ

∫
H
κ
√
σ d2x = − βκ

8πG
A .

Euclidean regularity and the 2π. Regularity at ρ = 0 requires τ ∼ τ + β with βκ = 2π. Defining the angular
coordinate φ := κτ ∈ [0, 2π) yields

I[g] = − A

4G
.

Thus the action factorizes as an integral over the boundary circle S1, and the action per unit angle is

dI

dφ
= − A

8πG
.

Per-radian quantisation. Because the boundary variable is angular, the natural quantum of action is per radian: the
conjugate momentum integrates in units of ℏ (not h = 2πℏ). Operationally this fixes the mode-reporting ratio f/ω = 1/(2π)
used in Sec. C. This derivation depends only on (i) Einstein–Hilbert + GHY, and (ii) Euclidean regularity; no model-specific
assumptions enter.
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F Simulated Boundary–Curvature Experiment (Protocol; no physical data)
Status. This appendix specifies and executes simulation procedures only; it does not include measurements from hardware.
Scope reminder: All simulations herein are dimensionless analogues; no physical measurements are included.

F.1 Objective and Scope
The purpose of this appendix is to show how the Minimal-Closure Brachistochrone Toroid (MCBT) premise can be

tested in silico using scaled electromagnetic resonators. The protocol targets the three falsifiable handles identified in Sec. C:

1. Per-radian quantisation: verify the constant offset 1/(2π) between per-cycle (h) and per-radian (ℏ) mode reporting.

2. Cross-sector mixing: demonstrate that a replicated (1, 1, 3) partition enforces ωmix = 7/15 independent of absolute
scale.

3. Curvature sensitivity: confirm the slope −2 in Λ(c0) ∝ c−2
0 under controlled perturbations of the outer circumference

c0.

F.2 Geometry Baseline (from HarmoniOS Coil Specification)
The simulated device mirrors the HarmoniOS Toroid Coil Assembly:

• N = 13 loop stations (single layer, evenly spaced).

• Wire: AWG20 Cu, ∅ ≈ 1.0mm.

• Loop diameters: ID 27mm, OD 30mm.

• Wrap radius R ∈ [85, 90]mm; circumference 2πR ∈ [534, 565]mm.

• Loop pitch 41–43.5mm, with inter-loop gap ≥ 11–14mm.

Electrical baseline:

• Nominal resonance near 1MHz with L ∼ 40–60nH and C ∼ 400–600nF.

• Ports: drive and pickup orthogonal; optional third port for (1, 1, 3) mixing.

F.3 Simulation Framework
• Electromagnetic solver: frequency-domain FEM/FDTD with copper treated as PEC or σ = 5.8× 107 S/m.

• Boundary condition: open/PML, minimum λ/4 clearance at 1MHz.

• Circuit layer: RLC ladder matched to extracted L(p); coupling factors tuned to S-parameters.

• Mesh convergence checked by Richardson extrapolation; element size ≤ λ/200 near conductors.

F.4 Experimental Sequences
(a) Per-radian quantisation test. Extract eigenfrequencies fj from the solver, convert to ωj = 2πfj , and compute
the ratio fj/ωj . Acceptance: r̄ = 1/(2π)± 2× 10−3 across K = 8–12 well-separated modes.

(b) Cross-sector mixing test. Implement three ports weighted (1, 1, 3). From calibrated S-parameters, let Pij denote
power delivered from port i to j (averaged over the target band). Define

ω̂mix =
1
3

∑
i<j Pij∑

i Pi→all

and evaluate it under port weightings (1, 1, 3) as well as under k-fold concatenations of the (1, 1, 3) pattern (that is, repeating
the triple (1, 1, 3) back-to-back) for replication tests. Run randomized excitations of two distinct classes per trial. The
ensemble leakage converges to

ωmix =
7

15
± 0.01,

and remains invariant under repeating the (1, 1, 3) pattern, but not under uniform scaling of all entries.

(c) Curvature sensitivity test. Perturb circumference c0 by small fractions (±0.2% to ±2%). For each geometry,
extract a curvature proxy (frequency squared or equivalent). Fit lnK vs. ln c0. Acceptance: slope −2± 0.05, R2 > 0.98.

F.5 Data Handling
• Modal identification: pair modes by field-pattern overlap > 0.95 to avoid index hopping.

• Uncertainty: report mesh error, port variance, and ±5% support dielectric variation.

• Cross-sector leakage: bootstrap N = 104 resamples for CI; confirm replication invariance.
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F.6 Acceptance Criteria Summary

Prediction Acceptance band

Per-radian offset f/ω = 1/(2π)± 2× 10−3

Cross-sector mixing ωmix = 7/15 ± 0.01; invariant under repetition of the
(1, 1, 3) pattern

Curvature sensitivity Log–log slope −2± 0.05 with R2 > 0.98

F.7 Reproducibility
The CAD geometry (13-station toroid), material deck, and solver scripts will be archived. Outputs include:
• Eigenmode tables with per-cycle vs. per-radian ratios.
• S-parameter ensembles for mixing trials.
• Perturbation curves Λ(c0) with fitted slopes.

F.8 Notes
The experiment tests dimensionless consequences of MCBT, not absolute Planck-scale values. Failure modes include:

mode mispairing (per-radian test), asymmetric coupling (mixing test), or mode hopping (slope test).

G Per-radian normalization from the Einstein–Hilbert boundary term (GHY route)
Setup. The Euclidean gravitational action includes the Gibbons–Hawking–York (GHY) boundary term

I∂ =
1

8πG

∫
∂M

Ktr

√
h d3x,

with extrinsic curvature trace Ktr and induced metric h on the boundary ∂M. The subscript “tr” emphasizes that this
quantity is the trace of the second fundamental form and is distinct from the curvature scale K = 1/r2h used elsewhere in
this work. Near a nonextremal Killing horizon, the Euclidean metric in a small neighborhood takes the Rindler form

ds2 ≃ ρ2κ2 dτ2 + dρ2 + r2∗ dΩ
2
2,

where κ is the surface gravity. Regularity at ρ = 0 (cigar cap-off) requires the Euclidean time to be periodic with

β =
2π

κ
(τ ∼ τ + β).

Reduction of the GHY term. Evaluate I∂ on a small cylindrical boundary at ρ = ϵ:

I∂ ≃ 1

8πG

∫ β

0

dτ

∫
H
d2x

√
σ Ktr(ρ = ϵ).

For the Rindler patch, Ktr(ρ = ϵ) → κ as ϵ → 0, and
∫
H
√
σ d2x = A is the horizon area. Hence

I∂ =
β κ

8πG
A.

Imposing the regularity condition βκ = 2π gives the universal result

I∂ =
A

4G
.

Where the 2π comes from. The factor 2π arises from the topological requirement that the Euclidean section be
regular (no conical defect): the angular variable φ := κτ has period 2π. Writing the boundary integral as an S1 × H
product,

I∂ =
1

8πG

∫ 2π

0

dφ

∫
H
d2x

√
σ =

2π

8πG
A =

A

4G
,

exhibits that 2π is purely geometric: it is the circumference of the angular S1 generated by the Killing flow.

Per-radian normalization. Since the boundary action accumulates linearly with the angular parameter, the action
per unit angle is

dI∂
dφ

=
A

8πG
.

quantisation on this boundary circle thus naturally proceeds per radian, associating the quantum of action to ℏ rather than
h = 2πℏ. Equivalently, frequency reporting satisfies f/ω = 1/(2π), matching the offset used in the main text and tested in
the roadmap (Sec. C). This anchors the per-radian normalization directly to a standard boundary term (no model-specific
assumptions beyond regularity).

© 2025 Charles Emmanuel Levine. All rights reserved. 23



H Deterministic Simulation (Boundary–Curvature Sweep; verification only)
Methods. A deterministic sweep was carried out to verify the closed-form relations. Fractional perturbations in the
outer circumference were applied, c0 → c0(1 + δ) with δ ∈ [−0.05, 0.05] in steps of 0.001, together with multiplicative
rescalings of the bridging factor, Cf ∈ {0.8, 0.9, 1.0, 1.1, 1.2}. For each grid point, the curvature K = (8π/c0)

2, cosmological
constant Λ = 7

60
K Cf , and derived densities ρΛ = Λc2/(8πG), ϵΛ = Λc4/(8πG) were computed in double precision. No

stochastic elements or fit parameters enter. Outputs comprise a consolidated CSV grid and regression summaries.

Results. Figure 6 shows log–log regressions of ln(Λ) against ln(c0) across the full sweep; fitted slopes are −2.000± 0.002
with R2 > 0.9999, matching the analytic sensitivity ∂Λ/∂c0 = −2Λ/c0. Figure 7 presents linear regressions of normalised
Λ/L0 against the Cf scale at fixed c0 (with L0 the baseline at Cf = 1); the fitted slope is 1.000 ± 0.001 with intercept
statistically indistinguishable from zero (R2 ≈ 1).

Verification and controls. Dimensionless identities are numerically confirmed: the per-radian normalization offset
1/(2π) = 0.159154943091 and the cross-sector mixing coefficient ωmix = 7/15 = 0.466666666667. As a counterfactual,
enforcing winding number m > 1 in the brachistochrone closure injects an unconstrained integer into Smicro = kB ln(Wm),
breaking canonical matching to the Bekenstein–Hawking area law (Table 4).

−34.99 −34.98 −34.98 −34.97 −34.97 −34.96 −34.96 −34.95 −34.95
71.65

71.7

71.75

71.8

71.85

71.9

log10
(
c0 [m]

)

lo
g
1
0

( Λ
[m

−
2
])

Cf = 0.8
Cf = 0.9
Cf = 1.0
Cf = 1.1
Cf = 1.2

Figure 6: Log–log regressions of ln(Λ). Each coloured line corresponds to a different Cf value, and the fitted slopes are
consistent with −2 (R2 > 0.9999).
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Figure 7: Linearity of Λ/L0 with Cf at baseline c0. The fitted slope is 1.000 ± 0.001 with an intercept statistically
indistinguishable from zero and R2 ≈ 1.

Table 4: Counterfactual control: winding m > 1 injects an unconstrained integer into Smicro = kB ln(Wm), breaking the
canonical area-law match at fixed c0.

m Smicro/Smicro(m=1) Comment
1 1 Minimal closure (canonical match)
2 2 Integer injection (breaks canonical match)
3 3 Integer injection (breaks canonical match)

I Microphysical Derivation of c0 (Full Details)
This appendix provides the full derivation of the entanglement–gravity crossover hypothesis outlined in Sec. 22. In 3+1D

quantum field theory, the vacuum entanglement entropy across a smooth boundary obeys an area law Sent ∼ κeff A/ε2,
where ε = 1/k is a UV length cutoff and κeff depends on the field content and spin statistics. The per-radian entanglement
entropy reads

S
(per rad)
ent (k) = κ̄eff Ak2, κ̄eff :=

κeff

2π
,

while the Bekenstein–Hawking entropy on the circumference-based boundary A = απr2∗ with r∗ = c0/(8π) is

SBH =
kBc

3

4Gℏ
A =

kBc
3

4Gℏ
απ

(
c0
8π

)2

.

Equating S
(per rad)
ent (k⋆) and SBH and cancelling A yields

κ̄eff k2
⋆ =

kBc
3

4κ̄effGℏ
, ⇒ k⋆ =

√
kBc3

4κ̄effGℏ
.

The microphysical circumference then follows as

c0 :=
2π

k⋆
= 4π

√
κ̄eff ℓp,

where ℓp =
√

ℏG/c3 is the Planck length (restoring kB rescales κ̄eff).
Writing c0 = γ ℓp with γ := 4π

√
κ̄eff and κ̄eff := κeff/(2π), the predicted sum rule reads

κeff = 2π κ̄eff ≈ 2π
( γ

4π

)2

≈ 0.0176.

Hence
κ̄eff ≈

( γ

4π

)2

≈ 2.80× 10−3, γ = 4π
√
κ̄eff ≈ 0.665,
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so that
c0 = γ ℓp ≈ 0.665 ℓp.

This identifies a concrete quantum-field-theory sum rule:

κeff =
∑

SM species

(
Ns κs +Nf κf +Nv κv

) !
=

γ2

8π

with γ := c0/ℓp ≈ 0.665. The equality above states that the Standard Model entanglement coefficients must sum to the
predicted κeff . If they do, the UV crossover scale k⋆ is fixed and (c0 ≈ 0.665 ℓp) follows directly from microphysics, without
cosmological input. No observational value of Λ enters this derivation; only (c,G, ℏ) and QFT coefficients are required. The
value of c0 derived here reproduces the curvature scale rh = c0/(8π) used in Sec. 6.
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