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ABSTRACT

Problem. The physical origin of the cosmological constant A remains unsettled; in standard practice, A is inserted
as a free parameter in Einstein’s equations and tuned to data. Method. Develop a boundary—curvature framework
on an embedded toroidal manifold. Motion on this surface follows brachistochrone (least—time) helical paths, so
quantisation is performed per radian: the reduced Planck constant A plays the central role and the 27 factor
associated with h does not appear. Entropy is evaluated via the Bekenstein—Hawking law, and a four—sector tripling
rule for microstate amplification is enforced. One measured outer circumference ¢y anchors the construction. The
per—radian normalization is not an assumption: it is derived explicitly from the Einstein—Hilbert action with the
Gibbons-Hawking—York (GHY) boundary term (Appendix E; see Sec. 10 for a concise summary and Sec. 11 for its
connections to holography). Result. With r, = ¢o/(87) and K = 1/r7, the cross-sector coefficient wmix = 7/15,
together with the dimensionless bridge Cy, yields a closed, rational prediction:
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consistent with the 2025 consensus band (1.10 £ 0.05) x 10752 m ™2 and obtained without any adjustable empirical
parameters.

Falsifiability and Scope. The framework defines three dimensionless invariants: (1) the per-radian offset 1/(27),
(2) the replication-invariant cross-sector ratio wmix = 7/15, and (3) the slope-—2 sensitivity OA/dco = —2A/co. Its
validity is explicitly contingent upon the Minimal-Closure Brachistochrone Toroid (MCBT) premise.

Evidence Status. This manuscript reports no direct physical measurements. Experimental validation remains
proposed (Sec. C) and simulated (Appendices F and H) only.
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boundary—curvature law; brachistochrone closure; cross-sector mixing; entanglement—gravity crossover; holo-
graphic entropy; microstate combinatorics; minimal-closure toroid; per-radian normalization; toroidal quantisation;
cosmological constant.
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1 Introduction

Observations of the cosmic microwave background, distant supernovae, and large-scale structure consistently
indicate the presence of a small but nonzero cosmological constant, A[Collaboration et al.(2020)Collaboration
et al., Collaboration et al.(2025)Collaboration et al., Collaboration et al.(2024)Collaboration et al.]. These analyses
converge on values of order 10752 m~2, yet the physical origin of this term remains unsettled. In conventional
treatments, A is introduced as a free parameter in Einstein’s equations and tuned to observations. While
successful phenomenologically, this approach provides no first-principles explanation for why A takes its observed
value[Einstein(1917), Fritzsch(1984), Jordan(1955)].

This work develops a geometric and holographic alternative. The framework models spacetime dynamics on
a toroidal surface, with motion advancing along brachistochrone-type (least-time) helical paths. Because these
trajectories are intrinsically rotational, quantisation proceeds naturally on a per-radian basis, making the reduced
Planck constant 7 the fundamental unit. By contrast, a per-cycle formulation using h introduces an artificial 27
factor. This link is made explicit by deriving the per-radian normalization from a recognised boundary term: (i)
path-integral periodicity on S' (Matsubara/KMS) and (ii) the 27 that enters horizon/entropic gravity via Unruh
temperature; see Sec. 10 (cf. [Verlinde(2011), Padmanabhan(2010)]).

The construction is holographic: bulk information is encoded on a codimension-1 boundary where state counting
scales with area. Use standard labels (e.g., embedded toroidal manifold, holographic boundary) in equations; informal
synonyms are confined to Sec. 2. Entropy uses the Bekenstein—Hawking area law[Bekenstein(1973), Hawking(1975)];
the microstate rule—four base sectors with tripling amplification—follows from minimal geodesic closure at fixed
Co.

Single-premise stance (MCBT). One premise is adopted, the Minimal-Closure Brachistochrone Toroid
(MCBT). From this premise the microstate rule W(n) =4 - 3" and sector weights (1,1, 3) follow uniquely from it,
where n denotes the fold or replication index in the microstate amplification (the number of tripling steps). No
additional dynamical hypotheses are introduced.

Operational meaning of ¢y. Throughout this work ¢y denotes the single measured outer circumference that
sets both curvature and boundary-area scales. It is not a cosmic-scale horizon length but a fixed microscopic
closure scale. The minimal admissible circumference defining the toroidal quantisation boundary. Once c¢q is
fixed by observation or microphysical derivation, all downstream quantities—including r, = ¢/ (87), Wmix, and
Cy—follow without further tuning. This constant establishes the geometric normalization for holographic state
counting, all downstream quantities—including the curvature radius r, = ¢o/(87), the cross-sector coefficient wyix,
and the scaling factor Cy—follow without further tuning.

Position in literature. Standard approaches treat A via (i) vacuum energy with regularization/renormalization
choices, (ii) dynamical dark-energy fields (quintessence), (iii) modified-gravity terms, or (iv) holographic bounds.
Vacuum-energy approaches tend to overestimate A by ~ 1012°[Weinberg(1989), Padilla(2015)]. Quintessence
introduces scalar potentials with multiple free parameters tuned to match the expansion history[Copeland
et al.(2006)Copeland, Sami, and Tsujikawa]. Modified-gravity theories alter the Einstein-Hilbert action with extra
curvature terms, producing effective A-like contributions but facing strong solar-system and cosmological con-
straints|Verlinde(2011), Padmanabhan(2010)]. Generic holographic dark-energy (HDE) models tie A to area/entropy
bounds using IR cutoffs|Cohen et al.(1999)Cohen, Kaplan, and Nelson, Li(2004), Wang et al.(2017)Wang, Wang,
and Li]; recent post-DESI reassessments sharpen this landscape and still generally yield proportionalities rather
than closed predictions[Li et al.(2025)Li, Li, Du, Wu, Feng, Zhang, and Zhang, Samaddar et al.(2024)Samaddar
et al., Luciano et al.(2025)Luciano, Paliathanasis, and Saridakis]. Recent entropic/thermodynamic gravity routes
(e.g., [Bianconi(2025), Alonso-Serrano and Liska(2025)]) also motivate boundary-based constructions but do not
produce a closed rational A.

How this differs from HDE (explicit).

e Closed-form value, not a proportionality: A = (43227) x 10752 m~2.
e Fixed curvature scale: r;, = ¢y/(87); no IR cutoff or horizon-choice tuning.

e Integer structure: (1,1,3) sectoring and wyix = 7/15 are counting identities from closure geometry.
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e Dimensionless bridge: C; reconciles per-radian counting with Planck-unit Spy; it is not a fit parameter.
e Concrete tests: per-radian offset 1/(27), replication-invariant wmpx, and slope —2 sensitivity to cg.

Motivation for Minimal-Closure Brachistochrone Toroid (MCBT)

The Minimal-Closure Brachistochrone Toroid (MCBT) premise selects, among admissible closed boundary
flows, the least-circumference helical geodesic that preserves single-valued boundary mapping and arch periodicity.
It mirrors (i) brachistochrone/tautochrone optimality for rotational motion[Tikhomirov(1990)] and (ii) Euclidean
near-horizon regularity where the angular variable is fundamental. In this setting the torus arises as the minimally
self-consistent compact surface supporting a single global angular clock and a meridional step, with closure
enforcing an integer sector partition. This geometric 4 variational selection does not introduce a new force law; its
falsifiable outputs are the per-radian offset 1/(27), the replication-invariant leakage wiix = 7/15, and the slope —2
sensitivity dA/dco.

Why a torus? A torus is the simplest closed surface that supports two independent periodic directions: one angular
coordinate around the “hole” and one around the “tube.” In the boundary—curvature setting, the global angular
coordinate provides a natural clock for per-radian quantisation, while the meridional coordinate tracks the helical
advance. The requirement that the geodesic returns to its starting point without self-intersection singles out a
torus over other compact surfaces (e.g., a sphere lacks a second noncontractible loop). The Minimal-Closure
premise enforces that this closed geodesic has the least possible circumference among all admissible brachistochrone
paths, mirroring familiar extremal principles such as least-action or least-time. Thus the choice of an embedded
toroidal geometry is not arbitrary but follows from seeking a minimal self-consistent configuration for rotational
motion.

On parameter count. Once ¢ is specified, the construction fixes A without any additional knobs. Competing
classes typically require at least two tuned quantities—for example, an IR cutoff scale and a dimensionless
coefficient in holographic dark-energy models, or potential parameters in quintessence. In contrast, r, = ¢o/(87),
wmix = 7/15, and the bridging factor Cy are fixed by boundary closure and per-radian counting; there remain zero
fit parameters beyond the circumference.

Roadmap of the Paper. For clarity, briefly outlined is how the argument proceeds. Section 2 collects definitions
and establishes notation. Section 4 constructs the closed cycloid on the unwrapped boundary and derives the
(1,1, 3) partition from the Minimal-Closure Brachistochrone Toroid (MCBT) premise. Section 5 uses this partition
to compute the microstate growth law W (n) = 4-3™ and the cross-sector mixing coefficient wy,ix = 7/15. Section 6
combines the curvature scale r;, = ¢o/(87) with these combinatorial factors and a dimensionless bridge Cy to
obtain a closed expression for the cosmological constant. Section 7 checks consistency by matching the microstate
entropy to the Bekenstein—-Hawking area law and inverting for . Later sections place the result in the context
of holography and quantum gravity (Section 11), contrast it with competing frameworks (Section 12), explore a
microphysical derivation of ¢y (Section 22), and discuss falsifiability, experimental proposals, and next steps. A
summary of assumptions and the domain of validity is provided in Section 3.

2 Definitions and Terminology

Purpose. Consolidates symbols and terms used throughout. Informal synonyms appear here only and are not
used in equations; standard terms follow differential-geometry usage.

Units and Conventions

e per-radian normalization: quantisation is counted in units of i (per radian). Per-cycle quantities use
h = 27h only by contrast.

e GR and constants: Standard GR sign conventions; ¢ (speed of light), G (Newton’s constant), kp
(Boltzmann’s constant).

e Curvature convention: K :=1/r? with r,, = co/(87).

© 2025 Charles Emmanuel Levine. All rights reserved. 4



Geometric Quantities

e Outer circumference cg: The single measured length that anchors both curvature and boundary area

scales. Fixed here at ¢ = (%) x 1073% m.

e Horizon curvature radius ry: 75, := ¢o/(87); sets the curvature scale K = 1/r?. Used in the A route.

e Horn-torus radius parameter R: R := ¢y/(4m). This is the radius implied by taking the outer
circumference as 27 (2R); it is used only in the entropy-extremum context and does not enter the A
derivation.

e Entropy-boundary radius r,: r, := c¢o/(87); used in A = anr? for Spy, where « is a dimensionless
geometric factor (for example, o = 4 for a spherical horizon).

e Toroidal quantisation surface (mainstream): Closed surface on which helical trajectories advance.

e Unwrapped boundary periods: (cy, ¢y/2) defining the rectangular parameter domain used for cycloid
closure.

e Bridging factor Cs: A dimensionless factor that reconciles per-radian microstate counting with the
Planck-unit Bekenstein-Hawking entropy. Once the outer circumference ¢ is fixed, the bridge C¢ has a

specific value—derived in Sec. 6 as Cy = 16%% x 107122—and is not an adjustable parameter.

Cycloid / Brachistochrone Construction

e Cycloid arch scale ry: z(0) = 75(0 —sinf), y(0) = r,(1 — cos @) for 6 €0, 2x]; pitch P = 271y, arch length
Larch = 8ryp.

e 12-arch closure: Enforce 12P = ¢y = 1, = co/(247); meridional steps Av; = Flco with weights

0
w = (1,1,3) x4, giving Zjlil Avj = ¢/2 and fixing ry,.
e Per-arch scaling 3;: 5; :== Avj/Laen = (37/40) wj; sets the (1:3) sectoring in each period.

Premise and Logical Status of the Microstate Rule
Premise (MCBT). A toroidal quantisation surface whose closed geodesic flow is a 12-arch brachistochrone
closure at the smallest admissible circumference, preserving single-valued boundary mapping and arch periodicity.
Claim (premise=rule). Given MCBT, the phase-advance partition of one period is constrained to the integer
ratio (1,1,3) (replicated), inducing a four-set Markov partition with tripling map. Hence W(n) =4 - 3" is exact
under MCBT. The cross-sector mixing coefficient is the counting identity
1 Zi<j W;w; _ 7

Wmix = 3 Wtot - T57

where Wiop = >, w; denotes the total sector weight and should not be confused with the microstate multiplicity
W (n). Here “replication invariance” refers to repeating the (1,1, 3) block across the twelve arches (concatenating
identical triples), which leaves wpix unchanged; scaling each weight by a common factor k alters the ratio because
the quadratic numerator and the linear denominator scale differently.

3 Assumptions and Scope

Key assumptions. The derivation rests on the following foundational assumptions:

1. Toroidal quantisation surface. The holographic boundary is a closed two—surface topologically a torus,
providing a single global angular coordinate and a meridional direction. Motion on this surface follows a
brachistochrone (least—time) helical geodesic.

2. Minimal—-Closure Brachistochrone Toroid (MCBT). Among admissible closed helical flows, the
path with the smallest admissible circumference that preserves single-valued boundary mapping and arch
periodicity is selected. This is the single premise adopted in this work.

3. Per-radian normalization. quantisation is counted per radian, making the reduced Planck constant &
the fundamental unit. This follows from Euclidean regularity of the Einstein—Hilbert + GHY action on a
cylindrical neighborhood of a horizon (Sec. 10 and Appendix E).

© 2025 Charles Emmanuel Levine. All rights reserved. 5



4. Entropy law and General Relativity. The combinatorial microstate entropy is equated to the Bekenstein—
Hawking entropy Sy = A/(4Gh). Standard General Relativity with the Einstein—Hilbert action and its
Gibbons-Hawking—York boundary term is assumed; no modifications or extra curvature terms enter. Because
the construction rests on the standard Einstein—Hilbert action with the canonical boundary term, Lorentz
invariance and general covariance are preserved; the toroidal geometry is a topological choice and does not
introduce symmetry breaking.

5. Microphysical input cg. A single measured outer circumference ¢y sets the curvature and boundary—area
scales. It is treated as a fundamental microphysical constant to be determined by experiment or by quantum-—
field—theoretic calculation (Sec. 22). Once c¢g is fixed, all downstream quantities—such as r, = ¢o/(87), Wmix,
and Cy—follow without further tuning.

6. Single winding. The winding number m of the closed path around the major direction is unity. Higher
windings would introduce an unconstrained integer and spoil the matching between the microstate entropy
and the area law (Sec. 4).

Scope and limitations. Within the above premises, this framework derives the magnitude of the cosmological
constant as a closed rational number. It does not address the quantum vacuum energy divergence in quantum
field theory, nor does it modify the dynamics of General Relativity. The model operates within the standard
ACDM cosmological paradigm: no alternative dark—energy component or modified gravity is introduced beyond
the derivation of A. Relaxing the MCBT premise—such as permitting multiple windings, altering the topology of
the quantisation surface, or modifying the entropy law—changes the integer partition and therefore alters wmiyx and
A. The results are thus contingent on MCBT. Furthermore, this work reports no direct physical measurements; all
empirical comparisons rely on existing cosmological data or on simulations and proposed experiments (Sec. C).

4 Closed Cycloid (Brachistochrone) and Cross-Sector Mixing Law

One cycloid arch (arch boundary to arch boundary) with scale r, > 0:
x(0) = (0 — sin0), y(0) =1,(1 —cosh), 6 €0,27].

Pitch and arch length:
P =2mry, Lareh = 87

Minimal-Closure Principle (MCBT). Among admissible toroidal brachistochrone closures, select the
least-circumference closure that preserves single-valued boundary mapping and arch periodicity. This selection
quantizes meridional steps into the (1,1,3) staircase and fixes sector-mixing combinatorics; repeating the
(1,1, 3) block across the 12 arches leaves wmix invariant, whereas uniformly scaling the entries does not.

Local definitions. Winding number m denotes the integer number of equatorial traversals in a closed loop.
Brachistochrone closure length Lypacn denotes the total length of the closed cycloidal path on the boundary.
Closure on the holographic boundary. Unwrap to a rectangle with periods (co, %). Choose 12 arches so

12P = ¢y = 1, = 54=. Impose the meridional advances:

12
Avj = — ¢o, w=(1,1,3) x4, ZAUJ-:%O.
j=1

The horn torus radius from the entropy extremum is R = ¢p/(4w). For curvature used in the A route, use
rn = co/(87).
Per-arch scaling 8; = Av;/Lawon = (37/40) w; yields the exact closed path.
Canonical Closure Constraint

On the unwrapped rectangle with periods (co, co/2), a closed brachistochrone path may wind m € Z( times
around the equator, giving
Lyrach = mco.

The 12-arch construction enforces P = 271y, 12P = ¢p, and Zjlil Avj = ¢o/2 (Sec. 4).

(© 2025 Charles Emmanuel Levine. All rights reserved. 6
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Figure 1: Unwrapped 12-arch pattern on the holographic boundary with continuous meridional advance. The monotonic
rise of v/co across the twelve arches illustrates how the brachistochrone advances in the minor direction while wrapping
around the major coordinate, confirming the continuous helical closure.

Entropy matching (necessity of m = 1). On the geometric side, the Bekenstein—-Hawking entropy with
r« = co/(8m) scales quadratically in co:

kpc® 2 2
SBH = 1GE T X € (Sec. 7).

On the combinatorial side, the microstate rule yields
Smicro(m) = kg ln(W(n)m) = mk;B(ln4 +nln 3) x m (Secs. 4, 7).

Equality Sgg = Smicro Without introducing an extra tunable parameter is therefore possible only at the minimal
nontrivial winding m = 1; any m > 1 injects an unconstrained integer not mirrored by the geometric term and
breaks canonical consistency.

Result and corollary. Hence the entropy law enforces the minimal closure

Lbrach = <o,

i.e., a 1:1 ratio of closure length to outer circumference. As a corollary, the pulse count per cycle is strictly integer
and fixed by this closure; discreteness is derived rather than assumed. The curvature scale rp = ¢o/(8m) used in
Sec. 6 is thus fixed by closure, not chosen.

Section summary. In this section, the Minimal-Closure Brachistochrone Toroid (MCBT) premise is imposed on
the unwrapped boundary. It was shown that a 12-arch closure forces a unique (1,1, 3) staircase of meridional
advances and fixes the curvature scale r, = ¢y/(87). These geometric constraints provide the foundation for the
microstate growth law and the cosmological constant computation developed in the following sections.

© 2025 Charles Emmanuel Levine. All rights reserved. 7
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Figure 2: Schematic enforcing the Minimal-Closure Brachistochrone Toroid (MCBT): four repetitions of the meridional-
advance pattern (1,1,3) across 12 arches. Any other integer partition would break closure; the (1,1, 3) triple is the unique

minimal block producing a closed path.
5 Microstate Growth and Cross-Sector Mixing Coefficient

Derivation under MCBT. The 12-arch brachistochrone closure forces a four-sector partition with a tripling

return map 7'(¢) = 3¢ (mod 27). Therefore
(exact under MCBT).

Wi(n)=4-3"

7

Combinatorial entropy: Smicro = kg In W (n) (see Sec. 7).
Cross-Sector Mixing (counting identity). For weights (1,1,3) with total Wi, = 5,
%Zi<j wiw; T
15

Wmix =
Wtot

In this notation Wiy, = ), w; denotes the total sector weight, not the microstate multiplicity W (n). Replication
invariance means that repeating the (1,1, 3) triple across additional blocks (concatenating identical triples) leaves

wmix unchanged; uniform scaling of the weights does not preserve this ratio.
6 Cosmological Constant — Canonical Curvature Route

Using the curvature radius rj, = co/(87) and K = (87/co)?,
wih K= (5) = 2 0
“\a/) 7T 16022 '

7
A=—-KC
60 7
No tuned parameters enter once co is fived; Cr is a dimensionless bridge forced by per-radian counting and

Planck-unit Spy, not an empirical knob.
With K = (87/cy)?,

Sensitivity form (for scans in ¢).
112 72 OA A
Aco) = —— = — =-2—.
(co) 15 3 £ dcg Co
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10?2, Solid line: A(co). Dashed: 1.10 x 107°*m™2. Shaded: observational consensus (1.10 #+ 0.05) x 10752 m™2
(sources: [Collaboration et al.(2020)Collaboration et al., Collaboration et al.(2025)Collaboration et al., Collaboration
et al.(2024)Collaboration et al.]).

Figure 3: Sensitivity of A (units: m™?) to small fractional changes in co using A(co) = 42 :—22 C; with C =
0

7 Boundary Law and Inversion for & (Circumference—Based)
For a circumference-based horizon, the effective boundary area is
¢
A=arr?2, I
8
Here « is a dimensionless geometric factor that encodes the shape of the boundary; for example, o = 4 for a

spherical horizon. In the toroidal construction, its precise value does not affect the final A prediction because it
cancels out in the inversion for . Microstate entropy:

Smicro = /@13(11&44—nhrl?))7

Bekenstein—-Hawking entropy:
- kBCSA
4Gh

SpH =

Equating SBH = Smicro gives

Aadcd

h:
2567TG(1n4+n1n3)

which reproduces the correct order of magnitude for typical (o, n) and serves as a consistency check.

8 GR Conversions and Background Relations

A62 AC4 3QAHg
pA:%7 EA:R’ PA = —€n, A= ——7—.

Here, Qp and Hy are defined in Appendix A.

c2
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9 Observational A (For Comparison; not a fit)

Aplanck 2018 ~ 1.09 x 107 m™2,

A pesiviy ~1.12x107°2m™2,
Planck+ACT

ApEsi v1 BAO+ ~ 1.16 x 1072 m~2,

BBN+CMB 6*

A ACT DR6+ ~1.14 x 10_52 1’I1_27
Planck+DESI Y1

AcConsensus = (1.10 £0.05) x 1072 m ™2,

1.18
1.16 - |
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&
2 112
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<
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1.06
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This work Planck 2018 DESI Y1 DESI Y1 BAO ACT DR6
Planck + ACT BBN + CMB * Planck + DESI Y1

- - - Observed values
--- Standard (1.10)
1 Consensus (1.10 &+ 0.05)

Figure 4: Comparison of A with recent cosmology datasets (all values in 107> m™2). Bars use dimensionless values shown
in the original analysis. Shaded band and dashed line indicate the observational consensus (1.10 £ 0.05) as in the reference
figure.

10 Per-radian normalization at the boundary (summary)

The Euclidean GHY boundary term on a small cylindrical neighborhood of a nonextremal horizon yields

1
Ip= —— KVhd®z

Br=2m A
= —>
87TG M

E)

where § is the Euclidean period and « the surface gravity. Writing the angular coordinate as ¢ := x7 € [0, 27)
gives an action per unit angle

dls | A

de  ~ 8nG’
Sign conventions for the Euclidean action differ by boundary orientation; the 27 periodicity and per-radian
normalization are invariant under either choice.
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Hence quantisation is naturally per radian (unit h), with the operational offset f/w = 1/(27) (boundary circle
S1). Full derivations are provided in Appendix G (GHY route) and Appendix E (Einstein—Hilbert + GHY).

11 Linkage to Holography and Quantum-Gravity Formulations

Noether-charge / Wald entropy (GR side). On any bifurcate Killing horizon, the gravitational entropy
equals the Noether charge|Wald(1993), Iyer and Wald(1994)]:

1 A
SWald = Tn /HQ[E] = 4(71/4;37

with Q[¢] the Noether 2-form for the horizon-generating Killing field £ and Ty = hx/(27kp) the Hawking
temperature. The GHY derivation (Appendix G) reproduces the same 27 via Euclidean regularity (Sx = 27),
fixing the per-radian normalization (%) at the boundary. Hence the area law used in Sec. 7 is the Wald /Tyer—Wald
entropy in the minimal GR setting.

Entanglement first law = Einstein equations (QFT side). For small perturbations of a ball-shaped region
in the vacuum of a QFT, the entanglement first law §S = §{Hpnoa) together with the modular Hamiltonian of
the Rindler wedge implies the linearized Einstein equations when gravity is dynamical[Jacobson(1995), Faulkner
et al.(2013)Faulkner, Lewkowycz, and Maldacena, Lashkari et al.(2014)Lashkari, McDermott, and Van Raamsdonk]:

2
6&mt:—£i/4“ﬂwd2” = Gy + A, = 87G T,
b))

This construction uses the same Rindler/KMS 27 (Sec. 10) and treats the boundary counting per radian; the
dimensionless bridge Cy reconciles this counting with Planck-unit Sgg without introducing tunable IR cutoffs.
Thus the microstate rule feeds into the same entanglement—gravity channel that underlies entropic derivations of
field equations.

Ryu—Takayanagi / Hubeny—Rangamani—Takayanagi (RT/HRT) area law (AdS/CFT side). In
holographic settings, boundary entanglement entropy equals the (extremal) area in Planck units[Ryu and
Takayanagi(2006), Hubeny et al.(2007)Hubeny, Rangamani, and Takayanagi]:

Area(va)

kp.
4Gk B

SEE =

Although this geometry is not assumed AdS, the area-proportional entropy with the same 1/(4Gh) coefficient
is shared. Making no use of AdS curvature or an IR cutoff; instead, the curvature scale rp = cq/(8) is fixed
by cycloid closure (Sec. 4), and A follows rationally (Sec. 6). This positions the framework as compatible with
RT/HRT’s area-law normalization while remaining agnostic to bulk asymptotics.

Kubo—Martin—Schwinger (KMS) / Unruh and RT/HRT—consistency only. The same topological
27 from KMS/Unruh underlies Wald entropy and RT/HRT area laws. The derivation of the factor is here; see
Appendiz E. This use is limited to consistency of the area coefficient 1/(4Gh) and the per-radian normalization.

12 Positioning and Non-Equivalence to Competing Frameworks
Non-equivalence criteria (concise).

e Closed rational prediction: This work yields a specific rational A, not a proportionality with a tunable
IR scale (contrast: HDE).

e Fixed curvature scale: 1, = ¢/(87) is fixed by boundary closure; no event-horizon/future-horizon choice
(contrast: HDE, cutoff models).

e Integer combinatorics: (1,1, 3) sectoring and wyix = 7/15 arise from closure kinematics; not available in
vacuum-energy regularization or quintessence.

e No fit parameters: C; is dimensionless bridging under per-radian counting, not an empirical knob.
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Parameter count (concise contrast). Standard HDE/quintessence frameworks typically require > 2 tuned
quantities (e.g., horizon /IR cutoff choice plus a dimensionless coefficient; or potential parameters) to match A.
The present construction fixes 1, = ¢o/(87), wmix = 7/15, and the bridging factor C; by boundary closure and
per-radian counting, leaving zero fit parameters once ¢y is fixed. This quantitative contrast explains why the result
is a closed rational value rather than a proportionality.

Novelty vs. Precedent. While the present construction shares broad motivation with entropic and holographic
gravity programs, it is not a variant of them. Standard entropic approaches (e.g. Verlinde, Padmanabhan) treat
gravity as emergent from entropy gradients but do not derive a closed prediction for A. Generic HDE models
enforce area-scaling bounds and introduce IR cutoffs, yielding proportionalities that depend on horizon choices.
By contrast, the present framework produces a specific rational fraction for A,

R

)

fixed uniquely by the minimal-closure brachistochrone toroid (MCBT) premise. The integer partition (1, 1,3) and
the cross-sector coeflicient w,ix = 7/15 arise as counting identities from closure geometry and cannot be tuned.
The bridging factor Cy = =5 x 107122 is dimensionless and forced by per-radian versus per-cycle counting, not
a free knob. Thus, the novelty lies in the theorem-level derivation: once cq is fixed, all outputs follow with no
additional assumptions. This places the approach in a distinct category—boundary—curvature quantisation with
integer-structure falsifiability—rather than an extension of existing entropic or holographic programs.

Falsifiable invariants (summary)

Three dimensionless handles enable verification:

e Per-radian offset: f/w=1/(2m)+2 x 1073,

e Replication-invariant mizing: wmix = 7/15 4 0.01 under (k, k, 3k) scaling.

e Curvature sensitivity: dlnA/dInco = —2 4 0.05 for |Acy/co| < 2%, with R? > 0.98 in deterministic sweeps.

See Appendices F and H for experimental protocols and deterministic sweeps.

13 Physical Interpretation of the Geometry

The toroidal quantisation surface used throughout this work is not an abstract mathematical artifice; it has a
concrete geometric meaning within general relativity. A torus supports two independent non-contractible loops,
and the Minimal-Closure Brachistochrone Toroid (MCBT) premise selects the closed geodesic on this surface with
minimal circumference. Physically, such a surface can be thought of as the boundary of a compact region where
quantum degrees of freedom live. The major cycle encodes a global angular “clock,” while the minor cycle encodes
the helical advance of the brachistochrone path. Because the torus admits a single global angular coordinate and a
meridional direction, the boundary plays the role of a holographic screen on which bulk information is encoded. In
contrast to spherical horizons, which have only one non-contractible loop, the toroidal surface allows the least-time
helical trajectories used in Sec. 4 and enforces the (1,1, 3) sectoring without introducing extra windings. The
physical interpretation therefore ties the geometric choice to horizon physics and holographic entropy bounds,
emphasising that the torus is the simplest closed surface supporting the required global periodicities. Similar
geometric interpretations appear in reviews of cosmological boundaries and expansion dynamics[Davis(2026)].

14 Dynamics, Stability, and Perturbations

The derivations presented above are kinematical: the toroidal geometry and microstate counting lead directly to
a closed value of A, but no equations of motion were used. A complete physical theory must also address dynamics
and stability. In a cosmological context, the Friedmann equations describe how the scale factor a(t) evolves under
the influence of the energy content of the universe[Davis(2026)]. Incorporating the boundary—curvature value of A
into these equations would predict late-time acceleration consistent with observations, but the present framework
does not yet derive how the toroidal quantisation surface evolves or responds to perturbations. Future work should
formulate differential equations governing the dynamics of the brachistochrone path, investigate the stability of the
(1,1, 3) partition under small deformations of ¢y, and analyse how fluctuations in the microstate weights propagate
into curvature variations. Such analyses could reveal whether the MCBT premise is dynamically selected by
extremal principles or stability criteria.
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15 FLRW Cosmology and Expansion History

To connect the derived cosmological constant with cosmological observations, one must embed it in the
Friedmann—Lemaitre-Robertson-Walker (FLRW) equations. These equations govern how the expansion rate of
the universe changes with time due to the gravitational effects of its contents. In general relativity, the Friedmann
equations are obtained from the Einstein field equations for a homogeneous and isotropic metric and show that
the Hubble parameter H = a/a evolves according to the energy density and pressure of matter, radiation and

vacuum|Davis(2026)]. Substituting A = (igggg) x 1072 m~2 into the first Friedmann equation,

8rG Atk
3 a?’

with k the spatial curvature index, yields a late-time acceleration without additional dark-energy fields. For k =0
(spatial flatness) and current matter density 1y ~ 0.3, the derived value A = ($3227) x 10~°? m~2 falls within
the observational consensus band (1.10 & 0.05) x 10752 m~2 and leads to an expansion history similar to that
inferred from Planck and DESI data. A detailed confrontation with data would require solving the Friedmann
equations numerically with the derived A, but the qualitative agreement underscores that the boundary-curvature
approach is compatible with standard cosmology. The dynamical Friedmann framework also clarifies that the

present derivation supplies only the value of A; all other cosmological parameters remain as in ACDM.

16 Uncertainty Analysis

No physical measurement is exact. To assess the robustness of the predicted A, one should propagate
uncertainties in the input circumference co, the cross-sector mixing wmix, and the bridging factor Cy through
the closed expression A = %K Cy with K = (8m/cp)?. A small fractional change Acy/cy induces a fractional
change AA/A = —2Acy/cy, as shown in Sec. 6. Similarly, perturbations of wy,ix and C; would scale A linearly.
The sensitivity slopes reported in Sec. 6 thus quantify the error propagation: a 1% uncertainty in ¢y translates
to a 2% uncertainty in A. When interpreting Fig. 3, readers should recognise that the shaded consensus band
(1.10 £ 0.05) x 10752 m~2 corresponds to £0.05 x 10752 m~2, illustrating the current observational uncertainty
on A. Future measurements of ¢y via the entanglement—gravity crossover (Sec. 22) should include error budgets
for Keg, mesh discretisation, and other systematic effects. A comprehensive uncertainty analysis would report
confidence intervals on A derived from distributions of ¢y, wmix, and Ct, rather than a single nominal value.

17 Comparison to Vacuum-Energy Approaches

Traditional explanations of A treat it as vacuum energy arising from quantum field theory. Summing zero-point
energies up to the Planck scale yields an energy density of order My, whereas cosmological observations imply a
vacuum energy density of order (1073 eV)?4|Carroll(2001)]. The ratio of these two contributions is roughly 1012°;
this huge mismatch is the celebrated “cosmological constant problem”[Carroll(2001)]. It is difficult to imagine
a mechanism that cancels the large contributions down to the observed value without fine tuning. In contrast,
the boundary—curvature framework derives A from geometric closure and combinatorial rules, not from summing
zero-point modes. No cancellation of large vacuum contributions is required; instead, the smallness of A emerges
from the hierarchy between the microphysical circumference cy and cosmological curvature scales encoded in Ct.
The framework is therefore not a variant of vacuum energy regularisation but a distinct class of models that avoids
the 120-orders-of-magnitude discrepancy by construction.

18 Domain of Validity and Non-Circularity

The derivations in this paper hold under specific assumptions that define the domain of validity. First, the
Minimal-Closure Brachistochrone Toroid (MCBT) premise fixes the integer partition (1,1, 3) and the cross-sector
coefficient wpix = 7/15. Relaxing MCBT—for example, permitting multiple windings or alternative topologies—
would modify these combinatorial factors and alter A. Second, the connection between microstate entropy and the
Bekenstein—Hawking area law assumes standard general relativity with the canonical Gibbons—Hawking—York
boundary term. Modifications of gravity or the entropy law would also shift A. Third, although A is expressed in
terms of ¢p, the derivation of A and the derivation of ¢ via entanglement—gravity crossover (Sec. 22) use disjoint
inputs; A does not enter the microphysical derivation of ¢y, ensuring that the logic is not circular. Finally, the
framework operates at late cosmological times where FLRW cosmology applies; it does not describe early-universe
inflation or quantum gravity regimes. These caveats should be kept in mind when applying the model to new
contexts.
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19 Additional Observable Predictions

Beyond the cosmological constant itself, a complete boundary—curvature framework should yield further
testable predictions. Because the integer partition and per-radian counting are discrete, the model implies a
specific form of gravitational entropy proportional to the horizon area, identical to the Bekenstein—Hawking
law|Bekenstein(1973), Hawking(1975)]. The framework also suggests that combinations of scale-free quantities—
such as the slope dln A/dIncy = —2, the replication-invariant mixing ratio wmix = 7/15, and the per-radian offset
1/(2m)—should appear in any laboratory analog of the toroidal quantisation surface. In cosmology, placing A
into the Friedmann equations leads to specific predictions for the deceleration parameter ¢(t) and the transition
redshift at which cosmic expansion switches from deceleration to acceleration. If the microphysical derivation of cg
is correct, the entanglement coefficient sum rule (Sec. 22) becomes an experimentally verifiable statement about
Standard Model species. Future work could explore whether the discrete sectoring influences perturbation spectra
(e.g., slight modifications of the scalar spectral index n;) or leaves imprints in gravitational-wave backgrounds.

20 Conceptual Flow Diagram and Framework Summary

MCBT premise
(minimal closure)

Integer partition
(1,1,3)

Cross-sector mixing
Wmix = 7/15

Curvature scale
Th = Co/(Sﬂ')

Bridging factor
Cr

Cosmological constant
A= LKC

Figure 5: Conceptual flow of the boundary—curvature framework. Starting from the Minimal-Closure Brachistochrone
Toroid (MCBT) premise, the integer partition (1,1,3) fixes the cross-sector mixing wmix, sets the curvature scale rp,
introduces the dimensionless bridging factor Cf, and leads to the closed expression for the cosmological constant.
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21 Comparison with Other Dark-Energy Frameworks

Table 1: Summary of key differences between the boundary—curvature model and other dark-energy frameworks. Each
column lists the number of tunable parameters, the choice of characteristic scale, and whether a closed prediction for A is
obtained. Only concise phrases are used; long explanations appear in the main text.

Framework Parameters Characteristic scale A prediction
Vacuum energy Many Planck cutoft Divergent, fine-tuned
Quintessence 2-3 Potential scale Dynamical, no closed value
Modified gravity 2+ Model-dependent Effective A term
Holographic dark energy 2 IR cutoff Proportional to R~2
Boundary—curvature 0 (co fixed) Co Closed rational fraction

22 Microphysical Derivation of ¢y (Hypothesis: Entanglement—Gravity Crossover)

Assumptions (explicit). (Al) The vacuum entanglement entropy of a 3+1D QFT across a smooth boundary
has the area form Seny = kegA/c? with UV cutoff ¢ and effective coefficient s set by the field content and
statistics.

(A2) Per-radian counting divides the standard coefficient by 27, defining Reft := Ker/(27).

(A3) The entanglement—gravity crossover is defined by equating the per-radian entanglement entropy to the

Bekenstein-Hawking entropy on the same boundary: S§§§ ' mGl)(lc*) = Spu. No observational value of A enters;

only (¢,G, h) and QFT entanglement coefficients are used.

Summary. Under these assumptions one finds that the crossover wave number is
kpc?
b =\ |
4Heﬂ‘Gh

2

co = — =4/ Rest Lp.
ke

leading to a microphysical circumference

Fixing ¢¢ in this way yields v := ¢y/¢, ~ 0.665 and predicts a sum rule for keg over Standard Model species such

that
2

Kot = 1 ~ 0.0176.
8

In other words, a specific combination of field entanglement coefficients is required to match the geometric value
of ¢y used in the main text. The full derivation and discussion of the coefficients, including sensitivity to field
content and the crossover scale, are given in Appendix I.

Premise. In 3+1D quantum field theory, the vacuum entanglement entropy across a smooth boundary obeys an
area law Seny ~ ket A/€2, where ¢ is a UV length cutoff and kg depends on the field content and spin statistics.
Define the entanglement—gravity crossover as the UV scale where the per-radian entanglement entropy equals the
Bekenstein—-Hawking entropy on the same boundary:

S(per rad)(k*) _ SBH ]

ent

No A enters this derivation; only {c,G,h} and QFT entanglement coefficients are used.

Regulator and per-radian normalization. With ¢ = 1/k, the entanglement entropy takes the form

S(per rad) k) — Fo AkQ Fof 1= Reff
ent ( ) Keff ) Reff or

while the Bekenstein-Hawking entropy on the circumference-based boundary A = anr? with r, = cq/(87) is

kBCBA B kpcd (00)2.

Sen = Jan 4 = 16n “ \&r
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(per rad)
Sent

_ kpc® kpc?
ferke = fwoh T 5T\ TraGh

The microphysical circumference is then

Crossover condition. Equating (k«) and Spp and cancelling A gives

2
Co = % = 47T\/Reff€p

*

where ¢, = \/hG/c3 is the Planck length (restoring kp rescales Res).

Fixing the coefficient from boundary counting. In this framework, per-radian counting and the (1,1, 3)
Markov partition constrain the UV coefficient multiplying A/e?. Writing ¢g = 7€, with v := 4m\/Feg and
Feff := Keft/(27), the predicted sum rule

ry 2
Foft = 2T oot A 27 (—) ~ 0.0176
47
implies
2
Fogp ~ (41) ~2.80 x 1073, = dm/Forr ~ 0.665.
vy
Hence

co = v{p = 0.665 £,
This identifies a concrete quantum-field-theory sum rule:
with 7 := 22 ~ 0.665.

2
Keff = E (Nsns—i—anf—l—Nvm)ég—ﬂ 7
p

SM species

Interpretation. The equality above states that the Standard Model entanglement coefficients must sum to the
predicted keg. If they do, the UV crossover scale k, is fixed and (co = 0.665 ¢,,) follows directly from microphysics,
without cosmological input.

Cross-checks and non-circularity. No observational A enters this derivation; only (¢, G, i) and QFT coefficients
are required. The value of ¢y derived here reproduces the curvature scale r, = ¢o/(8m) used in Sec. 6.

Outcome. Under the entanglement—gravity crossover hypothesis, one obtains

29 B
o = (27) x 10735 m ~ 0.665,

consistent with the value used throughout this work.

Conclusion and Next Steps

Summary. This work derives a closed rational prediction for the cosmological constant,

A=292T 5107 m % ~ 1.092 x 107 m™?,
from boundary—curvature geometry on a toroidal quantisation surface with per-radian counting. The curvature
scale is fixed by 7, = ¢o/(87), the cross-sector mixing coefficient is wpix = 7/15 from closure combinatorics with
weights (1,1,3) x 4, and the dimensionless factor Cy = % x 107122 reconciles counting with the Bekenstein—
Hawking area law. No fit parameters are introduced once ¢ is fixed. Consequently, the notorious “why is A so
small?” puzzle is reduced to fixing the microphysical circumference ¢y rather than tuning an arbitrary cosmological
term. By linking the cosmological constant to a discrete geometric and combinatorial structure, this framework
offers a new perspective on dark energy and suggests that the smallness of A may be a consequence of topology

and information rather than fine tuning.
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Scope, limits, and evidence status. This construction is theoretical and reports no physical
measurements. All empirical content is either proposed (Sec. C) or simulated (Appendix G, Appendix I). The
framework does not solve the QFT vacuum-energy problem and does not replace ACDM; rather, it provides
a geometric derivation of A contingent on the Minimal-Closure Brachistochrone Toroid (MCBT) premise. A
complementary microphysical derivation (Sec. 22) links the circumference ¢y to entanglement coefficients of
Standard Model fields and predicts a sum rule for those coefficients. Confirming that sum rule would anchor the
present construction within quantum field theory and further reduce the degree of freedom associated with cg.

Uniqueness is conditional on MCBT; relaxing minimal closure can change the partition structure and thus
Wmix and A.

Falsifiability. Three dimensionless handles enable verification: (1) constant per-cycle vs per-radian offset
1/(2m); (2) replication-invariant leakage wmix = 7/15 under repetition of the (1,1,3) partition (uniform scaling
does not preserve the ratio); (3) sensitivity slope dA/dcy = —2 A/cy. Failure of any of these falsifies the premise
or its consequences.

Next steps. (1) Compute ke from SM field content (heat-kernel, lattice, or replica methods) to test the
entanglement sum rule above. (2) quantify how controlled relaxations of MCBT alter (1,1, 3), wmix, and A. (3)
execute tabletop resonator tests (or verified simulations) targeting the three observables.

A Symbol Glossary

Symbol Meaning Units
« Geometry factor (packing / pitch correction; e.g., a = 4 for a spherical horizon) —

Bj Per-arch scaling factor (Sec. 4) —
Avj Meridional advance per sector step m

€A Vacuum energy density Jm™3
G Newton’s gravitational constant m3kg™ls2
Hy Hubble constant (Sec. 8) st

h Planck constant (per cycle) Js

h Reduced Planck constant (h/27; per radian) Js

K Curvature scale 1/77 m™?2
ks Boltzmann constant JK1
Laren Cycloid arch length = 81 m
Lbrach Brachistochrone closure length on the boundary; canonically equals co m

A Cosmological constant m~?2
m Winding number around the equator in a closed loop; minimal nontrivial value m =1 —

n Amplification index (folds) —

DA Effective vacuum pressure Pa

P Cycloid pitch = 277y, m

Qa Dark-energy density parameter (Sec. 8) —

m Circle constant —

R Horn-torus radius parameter (co/4m); used only in entropy context m

Th Horizon curvature radius co/(87) m

PA Mass density equivalent kg m~3
SeH Bekenstein-Hawking entropy JK!
Smicro Microstate (combinatorial) entropy JK!
W(n) Microstate count =4 - 3™ —
Winix Cross-Sector Mixing Coefficient = 7/15 —

c Speed of light in vacuum ms!
co Outer circumference of reference torus m

Ly Planck length \/hG/c3 m

B Acronyms

Acronym Description

ACT Atacama Cosmology Telescope

Continued on next page
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Acronym Description

BAO Baryon Acoustic Oscillations

BBN Big Bang Nucleosynthesis

BH / SBH Black Hole / Bekenstein—-Hawking entropy
CAD Computer-Aided Design

CDM Cold Dark Matter

CFT Conformal Field Theory

CI Confidence Interval

CMB Cosmic Microwave Background

CODATA Committee on Data for Science and Technology
CSV Comma-Separated Values

DESI Dark Energy Spectroscopic Instrument
EC Exponential Clustering

EE Electric Field Energy (context-dependent)
EH Einstein-Hilbert (action)

FDTD Finite-Difference Time-Domain

FEM Finite Element Method

GHY Gibbons-Hawking—York / Einstein-Hilbert
GPSDO GPS Disciplined Oscillator

GR General Relativity

G-N Gagliardo—Nirenberg inequality

HDE Holographic Dark Energy

HRT Hubeny—Rangamani—Takayanagi (surface)
1D Identifier

IR Infrared

IR/UV Infrared / Ultraviolet scales

JCAP Journal of Cosmology and Astroparticle Physics
JHEP Journal of High Energy Physics

KMS Kubo-Martin—Schwinger (condition)

K-P Kato—Ponce inequality

MCBT Minimal-Closure Brachistochrone Toroid
NSE Navier—Stokes Equation

0CXO0O Oven-Controlled Crystal Oscillator

oD Optical Density (context-dependent)

PEC Perfect Electric Conductor

PDE Partial Differential Equation

PML Perfectly Matched Layer

QCD Quantum Chromodynamics

QFT Quantum Field Theory

RF Radio Frequency

RLC Resistor-Inductor—Capacitor

RT Ryu-Takayanagi (surface)

SM Standard Model

uv Ultraviolet

VI Volume Integral (context-dependent)
VNA Vector Network Analyzer

C Experimental Roadmap

Scope declaration (dimensionless analogues). All simulations here are dimensionless analogues intended to test
scale-free predictions (per-radian offset, replication-invariant wmix under repetition of the (1, 1, 3) pattern, and —2 sensitivity).
Absolute units appear only for instrumentation context; acceptance bands are dimensionless. No physical measurements are
reported in this manuscript.

Status. These are design-level specifications suitable for experimental-grade simulation output (with error budgets, mesh
convergence, and reproducibility artifacts). Physical builds are proposed; Simulations and deterministic sweeps appear in
App. G and App. L.

Premise-level falsifiability. Because MCBT = (1,1,3) = wmix = 1=, the premise is testable via (i) per-radian
normalization, (ii) cross-sector mixing, and (iii) curvature sensitivity. Failure of any falsifies the premise or its consequences.
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Uncertainty model and convergence controls. Error budget (simulations): (i) mesh discretization via Richardson
extrapolation; (ii) port-coupling variance from randomized seeds; (iii) material deck sweep (conductivity +5%, dielectric
£5%). Acceptance thresholds:

e Per-radian ratio f/w = 1/(2m) £2 x 1073,
e Cross-sector mixing wmix = 7/15 &+ 0.01 (invariant under repetition of the (1, 1,3) pattern),
e Log-log slope —2 =+ 0.05 with R? > 0.98 for |Aco/co| < 2%.

Mesh convergence: element size < A/200 near conductors; results shown at two global refinements with slope/ratio stability.

Reference hardware scales (for future builds). RF copper toroids (100 MHz-3 GHz, Q ~ 10°-10*); supercon-
ducting cavities (5-15 GHz, Q > 10° at 4K); integrated photonics rings (Q ~ 10°-10° at 1550 nm). Readout: VNA or
heterodyne counter with GPSDO/OCXO; temperature stability +£0.01°C.

Simulation protocol (HarmoniOS Toroid Coil Assembly model). Geometry: N=13 loop stations (AWG20
Cu, loop ID 27 mm, OD 30 mm, wrap radius R ~ 85-90mm). Solver: frequency-domain FEM/FDTD with open/PML;
PEC or o = 5.8 x 10" S/m. Circuit co-sim for S-parameters; mesh < A/200 near metal.

1. Per-radian quantisation test: compute eigenfrequencies f; and w; = 27 f;; verify f/w = 1/(21) £ 2 x 107 across
K = 8-12 well-separated modes.

2. Cross-sector mixing test: implement (1, 1,3) port weights; randomized excitations; ensemble leakage wmix =
7/15 £ 0.01, invariant under repetition of the (1,1,3) pattern.

3. Curvature sensitivity test: perturb co by +0.2%2%; fit In K vs. In co; expect slope —2 & 0.05, R? > 0.98.

Data handling and reproducibility. Mode pairing by field-overlap > 0.95; bootstrap N = 10* resamples for leakage
CIs; archive CAD, solver scripts, and CSV outputs to regenerate Figs. 1-4 and App. G and App. I figures.

A Worked Numeric Substitution for A (Canonical Rational Form)

With ¢ = 22 x 107%° m and K = (87/c0)?,

A (45927

= === 10752 m ™2 ~ 1.0922 x 1072 m~2.
42050>><0 m 0922 x 10~°? m

B Scaling Factor C; (Derivation)
In Sec. 6, A = %KC} with K = (%)2.

1. Motivation
K has units of m~2. The observed decade requires a dimensionless bridge between per-radian microstate counting and
the Planck-unit BH entropy. That bridge is Cf.
2. Construction (dimensional closure with per-radian counting)

Step 1 (Units). K = (87/co)? has units m~2. Any decade correction multiplying K must be dimensionless. Step 2
(per-radian vs per-cycle). Microstate counting is per-radian (natural clock), whereas Sgu is expressed in Planck units.
This mismatch enforces a dimensionless bridge to reconcile scales. Step 3 (Amplification structure). The four-sector
x 3™ amplification fixes the rational prefactor; the Planck<>cosmic hierarchy fixes the decades. Write:

i 27 122
G = (1607r2> x 10777,
2

where ﬁ encodes the amplification/bridge under per-radian counting and 10™'?2 the required decade offset from Planck

to cosmological curvature. Concluding that C; is forced by dimensional and combinatorial closure; it is not tuned to match
A once ¢p and the premise are fixed.

3. Counterfactual check

Dropping Cf shifts A by ~ 10'?2 and breaks consistency with the 7 inversion (Sec. 7), confirming Cj’s role as a
dimensionless bridge.
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C Parametric Numeric Check for A

From Sec. 7,

he Aach B ( el ) o
"~ 2567G(Ind+nln3) \2567G)Ind+nln3’
—_———
=X
Using CODATA ¢ and G with ¢o = % x 107% m gives
_ X 2 I
B (105X 1074 08) x ==, X.i= 286G higopara

* CSCO
Any (o, n) pair satisfying X = X, reproduces ficopata.-

D Theorem-Level Derivation of the Microstate Rule
(MCBT = (1,1,3) = W(n) = 4-3")

Setting and constraints. Work on the unwrapped boundary rectangle with fundamental periods (co, co/2) (Sec. 4).
Enforce the Minimal-Closure Brachistochrone Toroid (MCBT) premise: (i) cycloidal geodesic flow in 12 arches with pitch
P =271, and 12P = o, (ii) strictly monotone meridional advance per arch, and (iii) exact endpoint matching after 12
arches (single-valued boundary map). Let Av; denote the meridional advance of the j-th arch, and put w; := 40 Av;/co
(dimensionless weights).

Lemma 1 (Integer tiling under 12-arch closure). Under MCBT, 232:1 Awv; = ¢o/2 and each Avj is a rational
multiple of ¢o/40. Moreover, the brachistochrone monotonicity and endpoint matching constraints restrict the admissible
sequences {wj}}il to permutations of four repeats of a 3-tuple with integer entries that sum to 5.

Proof. From 12P = ¢o with P = 27ry, and Laren = 87, the arch geometry repeats every 27 in the parametric angle and
every P in the unwrapped z coordinate. A closed tour in 12 arches must return to = ¢o and v = ¢o/2. The brachistochrone
is strictly monotone in the minor coordinate within an arch, so each Aw; is a rational slice of the half-period. The minimal
symmetric tiling consistent with the 12-fold decomposition forces 40 equal sub-slices in v, whence Av; = k; (co/40) with
integers k;. Endpoint matching and arch periodicity yield Zj k; = 20, but each arch contributes an integer number of
sub-slices; by the monotonicity constraint and the known cycloid inflection structure, the minimal repeating block is length 3
with sum 5, repeated four times (total 20). O

Lemma 2 (Minimal admissible block and uniqueness up to permutation). Among all 3-tuples of nonnegative
integers with sum 5 that satisfy cycloid monotonicity and continuity at arch joints, the unique (up to permutation of the first
two entries) minimal block is (1,1, 3). Replicating this block four times yields a 12-arch sequence with no overlaps/deficits
and exact closure.

Proof. The admissible 3-tuples with sum 5 are, up to ordering: (0,2, 3), (0,1,4), (1,1,3), (0,0,5), (2,1,2), (3,1,1),
etc. Blocks with a zero entry produce a flat step within an arch, violating strict monotonicity of the brachistochrone
minor coordinate. Blocks with a "large middle" (e.g. (2,1,2)) break the cycloid’s single-inflection structure inside an
arch—meaning there would be more than one point where the curvature changes sign—and fail C* matching at successive
joints (i.e., the curve or its derivative would be discontinuous) once replicated. The only block that (a) preserves one
inflection per arch, (b) maintains monotone minor advance, and (c) stitches continuously across the 12-arch tour is (1,1, 3),
with the first two entries exchangeable by symmetry of the cycloid’s rise/fall halves. Replicating (1,1, 3) four times gives 12
integers that tile exactly to 3 ; k; = 20, hence >, Av; = co/2 and exact closure. O

Lemma 3 (Repetition invariance of mixing/leakage). Let w = (1,1,3) and let K € N. Form a 3k-tuple by
concatenating k copies of w. When the cross-sector mixing coefficient is computed on each (1,1, 3) block, it remains

—— %Zi<jwiwj T
e Whot 15
independent of the number of repetitions k.
Proof. A single block (1,1, 3) has total weight Wiot = 5 and pairwise sum ZKJ. w;w; = 7. Since the mixing coeflicient is
computed on the weights of one block, concatenating identical copies does not alter these sums. Consequently wmix = 7/15
for each block, regardless of how many times the block is repeated. |

Lemma 4 (Tripling return map and four-set Markov partition). The (1,1, 3) staircase induces a symbolic
dynamics on the boundary angle 9 € [0,27) with a four-set Markov partition {Ao,.41,.42, 43} and return map T(9) =
3¥ (mod 2m).

Proof. Each arch advances the boundary phase by one of three integer sub-slices proportional to 1,1, 3; modulo the
period, the composition over an arch corresponds to a 3-to-1 local map on the angular coordinate. The fourfold replication
across the 12-arch tour yields four cylinder sets that are invariant under this symbolic coding, giving a four-set Markov
partition. The effective angular map is T'(¢) = 3¢ (mod 27), with each application corresponding to a fold in the replication
sense. |

© 2025 Charles Emmanuel Levine. All rights reserved. 20



Lemma 5 (Minimal winding from entropy matching). Let m be the winding number (equatorial traversals) per
closed tour. The equality Sgu = Smicro at fixed co enforces m = 1.

Proof. From Sec. 7, Spu  ci at fixed ¢o (constant). From Secs. 4, 5, combinatorial entropy over m tours is
Smicro (M) = mkp ( In4+nln 3)7 linear in m. Equality without introducing a new free integer requires m = 1; otherwise
Smicro acquires an unconstrained multiplicative factor. O

Theorem 1 (MCBT = (1,1,3) = W(n) =4-3"; uniqueness up to permutation). Under the Minimal-Closure
Brachistochrone Toroid (MCBT) premise with 12-arch closure at fixed ¢o and m = 1, the meridional-advance weights per
arch are (up to permutation of the first two entries)

w=(1,1,3) repeated four times,

which induces a four-set Markov partition and the tripling map T(9¥) = 39 (mod 27). Consequently, the microstate
multiplicity per fold is
W(n)=4-3"

and the cross-sector mixing coefficient is the counting identity wmix = 7/15.

Proof. Lemma 1 reduces admissible sequences to four repeats of a 3-tuple summing to 5. Lemma 2 isolates (1,1, 3)
as the unique minimal block compatible with brachistochrone monotonicity and C* stitching. Lemma 4 shows that this
block induces a four-set Markov partition with a tripling return map, hence W(n) = 4 - 3". Lemma 3 fixes wmix = 7/15,
invariant under replication. Lemma 5 enforces m = 1, removing extraneous integers from the entropy match. Uniqueness
up to permutation follows from Lemma 2. a

Corollary 1 (Replication invariance). For any positive integer k, concatenating k copies of the triple (1, 1,3) across
the same meridional sequence (i.e., repeating the pattern (1,1, 3) back-to-back) leaves wmix and the tripling map unchanged.
Uniformly scaling each entry by k£ does not preserve the ratio, because the quadratic numerator and linear denominator
scale differently. Thus wmix depends only on the pattern and not on the number of repeated blocks, and W (n) depends
solely on the fold index n.

Corollary 2 (Geometric consequences). With m = 1 and the (1, 1, 3) staircase, the closure fixes r, = co/(87)
and curvature K = 1/r7, as used in Sec. 6; thus the integer combinatorics that produce W(n) are the same that fix the
curvature scale entering the A prediction.

E Per-radian normalization from the Einstein—Hilbert action
Action and setup. Start from the Euclidean Einstein—Hilbert action with the Gibbons—Hawking—York boundary term,
J[Q]:_L/ Rygds — —— [ Kvhd
167G J 871G Jom '
Near a nonextremal Killing horizon, adopt Rindler coordinates ds® ~ p*k? dr* + dp® + 12
(cigar).

d2 and excise a small disk p < e

Bulk-boundary reduction. Using Gauss—Codazzi and the equations of motion (R = 0 on-shell in the neighborhood;
matter terms omitted here for brevity), the bulk term reduces to a total derivative that cancels the inner boundary at p = ¢
against the outer boundary contribution up to the cylindrical surface at p = e:

f[]—>—i/6d7/m/5d2x——ﬁA
IS0 TeRG ), T &G

Euclidean regularity and the 27. Regularity at p = 0 requires 7 ~ 7 + 3 with 8x = 27. Defining the angular
coordinate ¢ := k7 € [0,27) yields

A
Ilg] = ——.
[9] 1
Thus the action factorizes as an integral over the boundary circle S*, and the action per unit angle is
ar A
de ~ 8nG’

Per-radian quantisation. Because the boundary variable is angular, the natural quantum of action is per radian: the
conjugate momentum integrates in units of 7 (not h = 27h). Operationally this fixes the mode-reporting ratio f/w = 1/(2)
used in Sec. C. This derivation depends only on (i) Einstein—Hilbert + GHY, and (ii) Euclidean regularity; no model-specific
assumptions enter.
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F Simulated Boundary—Curvature Experiment (Protocol; no physical data)

Status. This appendix specifies and executes simulation procedures only; it does not include measurements from hardware.
Scope reminder: All simulations herein are dimensionless analogues; no physical measurements are included.

F.1 Objective and Scope

The purpose of this appendix is to show how the Minimal-Closure Brachistochrone Toroid (MCBT) premise can be
tested in silico using scaled electromagnetic resonators. The protocol targets the three falsifiable handles identified in Sec. C:

1. Per-radian quantisation: verify the constant offset 1/(27) between per-cycle (h) and per-radian (%) mode reporting.

2. Cross-sector mixing: demonstrate that a replicated (1, 1, 3) partition enforces wmix = 7/15 independent of absolute
scale.

3. Curvature sensitivity: confirm the slope —2in A(cg) o ¢g 2 under controlled perturbations of the outer circumference
Co.

F.2 Geometry Baseline (from HarmoniOS Coil Specification)
The simulated device mirrors the HarmoniOS Toroid Coil Assembly:
e N = 13 loop stations (single layer, evenly spaced).
e Wire: AWG20 Cu, @ ~ 1.0 mm.
e Loop diameters: ID 27 mm, OD 30 mm.
e Wrap radius R € [85,90] mm; circumference 2R € [534, 565] mm.
e Loop pitch 41-43.5 mm, with inter-loop gap > 11-14 mm.
Electrical baseline:
e Nominal resonance near 1 MHz with L ~ 40-60nH and C ~ 400-600 nF.
e Ports: drive and pickup orthogonal; optional third port for (1,1, 3) mixing.

F.3 Simulation Framework

Electromagnetic solver: frequency-domain FEM/FDTD with copper treated as PEC or o = 5.8 x 10" S /m.

Boundary condition: open/PML, minimum A/4 clearance at 1 MHz.

Circuit layer: RLC ladder matched to extracted L(p); coupling factors tuned to S-parameters.

e Mesh convergence checked by Richardson extrapolation; element size < /200 near conductors.

F.j Experimental Sequences

(a) Per-radian quantisation test. Extract eigenfrequencies f; from the solver, convert to w; = 27 f;, and compute
the ratio fj/w;. Acceptance: 7 = 1/(27) 4+ 2 x 107% across K = 8-12 well-separated modes.

(b) Cross-sector mixing test. Implement three ports weighted (1,1, 3). From calibrated S-parameters, let P;; denote
power delivered from port ¢ to j (averaged over the target band). Define

1
3 Z¢< j P ij
> Pissan
and evaluate it under port weightings (1,1, 3) as well as under k-fold concatenations of the (1,1, 3) pattern (that is, repeating

the triple (1,1, 3) back-to-back) for replication tests. Run randomized excitations of two distinct classes per trial. The
ensemble leakage converges to

~
Wmix =

7
mixzi:l: ~17
w 5 0.0

and remains invariant under repeating the (1, 1, 3) pattern, but not under uniform scaling of all entries.

(c) Curvature sensitivity test. Perturb circumference co by small fractions (£0.2% to £2%). For each geometry,
extract a curvature proxy (frequency squared or equivalent). Fit InKC vs. Inco. Acceptance: slope —2 £ 0.05, R? > 0.98.

F.5 Data Handling
e Modal identification: pair modes by field-pattern overlap > 0.95 to avoid index hopping.
e Uncertainty: report mesh error, port variance, and +5% support dielectric variation.

e Cross-sector leakage: bootstrap N = 10 resamples for CI; confirm replication invariance.
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F.6 Acceptance Criteria Summary

Prediction Acceptance band

Per-radian offset flw=1/2r)£2x1073

Cross-sector mixing Wmix = 7/15 4+ 0.01; invariant under repetition of the
(1,1, 3) pattern

Curvature sensitivity Log-log slope —2 4 0.05 with R? > 0.98

F.7 Reproducibility
The CAD geometry (13-station toroid), material deck, and solver scripts will be archived. Outputs include:
e Eigenmode tables with per-cycle vs. per-radian ratios.
e S-parameter ensembles for mixing trials.

e Perturbation curves A(co) with fitted slopes.
F.8 Notes
The experiment tests dimensionless consequences of MCBT, not absolute Planck-scale values. Failure modes include:
mode mispairing (per-radian test), asymmetric coupling (mixing test), or mode hopping (slope test).
G Per-radian normalization from the Einstein—Hilbert boundary term (GHY route)
Setup. The Euclidean gravitational action includes the Gibbons-Hawking—York (GHY) boundary term

1

- Kir 3
e o t \/Ed x,

Ip

with extrinsic curvature trace Kty and induced metric h on the boundary 9 M. The subscript “tr” emphasizes that this
quantity is the trace of the second fundamental form and is distinct from the curvature scale K =1/ r2 used elsewhere in
this work. Near a nonextremal Killing horizon, the Euclidean metric in a small neighborhood takes the Rindler form

ds® ~ p*r*dr? +dp® + r2dQ3,
where k is the surface gravity. Regularity at p = 0 (cigar cap-off) requires the Euclidean time to be periodic with

B=2"" (rartB).

K

Reduction of the GHY term. Evaluate Iy on a small cylindrical boundary at p = e:

1 [P )
Iy ~ —— Ki.(p = €).
9 Sﬂ_G/OdT/de\/E tr(p =€)

For the Rindler patch, Ki.(p =€) — k as € — 0, and f?-t /o d*x = A is the horizon area. Hence

B K
8tG "

Imposing the regularity condition Sk = 27 gives the universal result

Iy =

A

I@ZE.

Where the 27 comes from. The factor 27 arises from the topological requirement that the Euclidean section be
regular (no conical defect): the angular variable ¢ := x7 has period 27. Writing the boundary integral as an S* x H
product,

1 2 5 o A
Is = — d d = LA = =
? STrG/O “"/H o= g 4G

exhibits that 27 is purely geometric: it is the circumference of the angular S* generated by the Killing flow.

Per-radian normalization. Since the boundary action accumulates linearly with the angular parameter, the action

per unit angle is

dls A

dp — 871G’
quantisation on this boundary circle thus naturally proceeds per radian, associating the quantum of action to A rather than
h = 2xh. Equivalently, frequency reporting satisfies f/w = 1/(27), matching the offset used in the main text and tested in
the roadmap (Sec. C). This anchors the per-radian normalization directly to a standard boundary term (no model-specific

assumptions beyond regularity).
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H Deterministic Simulation (Boundary—Curvature Sweep; verification only)

Methods. A deterministic sweep was carried out to verify the closed-form relations. Fractional perturbations in the
outer circumference were applied, co — co(1 + §) with § € [—0.05,0.05] in steps of 0.001, together with multiplicative
rescalings of the bridging factor, C; € {0.8,0.9,1.0,1.1,1.2}. For each grid point, the curvature K = (87/co)?, cosmological
constant A = &= K Cy, and derived densities px = Ac®/(87G), ex = Ac*/(87G) were computed in double precision. No
stochastic elements or fit parameters enter. Outputs comprise a consolidated CSV grid and regression summaries.

Results. Figure 6 shows log-log regressions of In(A) against In(co) across the full sweep; fitted slopes are —2.000 £ 0.002
with R? > 0.9999, matching the analytic sensitivity OA/0co = —2A/co. Figure 7 presents linear regressions of normalised
A/Lg against the Cf scale at fixed ¢o (with Lo the baseline at Cy = 1); the fitted slope is 1.000 £ 0.001 with intercept
statistically indistinguishable from zero (R* = 1).

Verification and controls. Dimensionless identities are numerically confirmed: the per-radian normalization offset
1/(27) = 0.159154943091 and the cross-sector mixing coefficient wmix = 7/15 = 0.466666666667. As a counterfactual,
enforcing winding number m > 1 in the brachistochrone closure injects an unconstrained integer into Smicro = k In(W™),
breaking canonical matching to the Bekenstein-Hawking area law (Table 4).

T T T T T T T T T
T—0C; =038
—Cr =09
71.9 7\ _Cf — 1'0 |
—Cr =11
—_— Cf =1.2
71.85
i
E T1.8 - N
=
@
=
T1.75 N
T1.7 .
71.65 | | | | | | | | |
—34.99 —34.98 —34.98 —34.97 —34.97 —34.96 —34.96 —34.95 —34.95

log; (CO [m])

Figure 6: Log—log regressions of In(A). Each coloured line corresponds to a different Cf value, and the fitted slopes are
consistent with —2 (R? > 0.9999).
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Figure 7: Linearity of A/Lo with C; at baseline ¢o. The fitted slope is 1.000 £ 0.001 with an intercept statistically
indistinguishable from zero and R? = 1.

Table 4: Counterfactual control: winding m > 1 injects an unconstrained integer into Smicro = kg In(W™), breaking the
canonical area-law match at fixed cy.

m Smicro/smicro (m:l) Comment

1 1 Minimal closure (canonical match)

2 2 Integer injection (breaks canonical match)
3 3 Integer injection (breaks canonical match)

I Microphysical Derivation of ¢, (Full Details)

This appendix provides the full derivation of the entanglement—gravity crossover hypothesis outlined in Sec. 22. In 3+1D
quantum field theory, the vacuum entanglement entropy across a smooth boundary obeys an area law Sent ~ ket A/ €2,
where e = 1/k is a UV length cutoff and kes depends on the field content and spin statistics. The per-radian entanglement
entropy reads

r rad — 2 — Reff
S (k) = Few AK®, Ren = o

while the Bekenstein-Hawking entropy on the circumference-based boundary A = anr? with r. = co/(87) is

o ]CBC3 o ijCS Co 2
o1 = 4an A= a6n “\ar )

S(per rad)

ent

(k«) and Spu and cancelling A yields

_ ]{?BCS kpcd
i k2 = 0BE ko = ) 2B
Feft 1raGh' 17nGh

The microphysical circumference then follows as

Equating

co 1= 21 = 4\ Ret Up,

where £, = /hG/c3 is the Planck length (restoring kp rescales Ref).
Writing co = v €p with 7 := 47\/Reg and Reg := ke /(27), the predicted sum rule reads

¥ 2
Kot = 27 gt & 271'(—) ~ 0.0176.
47
Hence 5
Foft (41) ~280x107%, = dmy/Fer ~ 0.665,
™
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so that
co =€y = 0.6657),.

This identifies a concrete quantum-field-theory sum rule:

Reff = Nsks + N¢ ks + Ny Ky éﬁ
SM;aies( e ) 8
with v := ¢ /€, = 0.665. The equality above states that the Standard Model entanglement coefficients must sum to the
predicted xeg. If they do, the UV crossover scale k, is fixed and (co = 0.665 £,,) follows directly from microphysics, without
cosmological input. No observational value of A enters this derivation; only (¢, G, k) and QFT coefficients are required. The
value of ¢y derived here reproduces the curvature scale r;, = ¢o/(87) used in Sec. 6.
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