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ABSTRACT

The classical incompressible Navier–Stokes equations admit unbounded vortex stretching and an indefinite energy
cascade, obstructing a straightforward proof of regularity. Proposed is a geometric–complex closure in which the
vorticity dynamics are embedded on a curvature-constrained manifold with an effective curvature ceiling Λeff . A
complexified velocity u = ur + i ui provides an analytically explicit bookkeeping channel for the rotational phase
associated with helical vorticity, which is not represented in purely real formulations of the Navier–Stokes equations.
A curvature-optimized constraint yields a Curvature–Constrained Closure coupling curvature κ, torsion τ and the
ceiling Λeff . This coupling establishes a uniform bound in the critical norm Ḣ1/2, throttling the alignment–driven
vortex–stretching mechanism. The resulting equations remain Galilean invariant, introduce an intrinsic curvature
scale RC = Λ

−1/2
eff , and reduce to the classical Navier–Stokes system when Λeff → 0. The framework regularises

vortex dynamics and predicts dimensionless invariants amenable to experimental and numerical falsification.
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1 INTRODUCTION
The Clay Millennium Problem on Navier–Stokes existence and smoothness asks whether smooth, divergence–free

initial data in R3 can develop finite–time singularities. Classical analysis attributes the obstruction to the nonlinear
convective term (u ·∇)u, which amplifies vorticity through self–alignment of stretching directions. Standard
decompositions ∇u = S + Ω focus on the symmetric rate–of–strain tensor S and treat the antisymmetric rotation
tensor Ω as harmless because Ωω = 0 when contracted with vorticity ω = ∇ × u. This emphasis overlooks
a rotational phase about the vorticity axis: in real variables the phase is hidden and there is no bookkeeping
channel to monitor it. Unchecked, this helical phase component allows alignment–driven vortex stretching to
proceed indefinitely. A formal description of this problem can be found in the Clay Mathematics Institute
exposition [Fefferman(2000)].

This paper introduces the Curvature–Constrained Closure as part of a geometric–complex closure of the
Navier–Stokes equations. The closure embeds vorticity dynamics on a curvature-constrained manifold with an
effective curvature ceiling Λ, extends the velocity to a complex field u = ur + i ui and derives a coupling between
curvature κ, torsion τ and Λ via a variational principle. The imaginary component ui is introduced as an explicit
representation of the helical phase associated with vorticity-line twisting. While not directly measured in classical
formulations, it is consistent with helical-mode decompositions of the vorticity field [Waleffe(1992)] and provides
an analytically tractable channel for tracking rotational phase within the closure model. Including ui restores the
missing bookkeeping channel for the rotational phase and renders the geometric closure analytically tractable.

The curvature constant C is a modelling parameter defined by the maximum Frenet–Serret curvature budget
per unit arclength (Section 2) and sets an intrinsic scale RC = C−1/2 in vortical flows. In turbulent experiments
coherent structures have radii of order 0.1–1m [Saffman(1992)]. Since C = R−2

C , these radii correspond to a
curvature budget in the range C ∼ 1–102 m−2 (for RC = 0.1m one finds C ≈ 100m−2, while RC = 1m gives
C ≈ 1m−2). Imposing a finite C is analogous to other regularising principles in fluid mechanics, such as Onsager’s
critical exponent [Cheskidov et al.(2008)Cheskidov, Friedlander, Pavlović, and Shvydkoy]. It throttles the curvature
and torsion of vortex filaments and closes the system without deriving C from first principles.

The objective is not to prove global regularity for arbitrary initial data. The Curvature–Constrained Closure
yields three concrete analytical consequences: (i) a uniform curvature ceiling κ2+τ2 ≤ ακ Λ that bounds the growth
of curvature and torsion; (ii) a bounded amplification constant C(Λ, αalign) in the critical Ḣ1/2 energy inequality,
estimated via refined Kato–Ponce and Bony product estimates (Appendix A) and satisfying C(Λ, αalign) → C0

as Λ → 0; and (iii) a uniform energy control that ensures global existence for sufficiently small initial data in
Ḣ1/2. Large initial data remain an open problem and are not claimed to be regularised here. The model therefore
provides a partial obstruction to singularity formation rather than a complete solution to the Clay problem.

The Curvature–Constrained Closure also produces several dimensionless predictions: a per–radian flux offset,
a replication–invariant mixing ratio and a curvature–sensitivity slope (Section 5). These follow directly from
combining the helical basis, the curvature ceiling and the phase–rate model Ψk and arise from the structure of the
helical basis and the curvature ceiling within the closure model. They are provisional targets for experiment and
simulation and their values may be refined by dimensional and scaling analysis. Constants such as cϕ and cu in
the phase closure are estimated to be of order unity from local strain and characteristic flow speeds; their precise
values require empirical calibration.

The term “Closure” is used in the same sense as classical geometric or variational closures such as Fermat’s
principle or least–action principles. It denotes a structural constraint derived from a variational principle that
reduces to the classical Navier–Stokes equations as Λ → 0. The curvature ceiling Λ is determined by measurable
properties—vorticity–line curvature, torsion spectra, coherent structure radii, and helical closure geometry—and
can be tuned in experiments. Although numerical simulations are not required for the analytical results presented
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here, future direct numerical simulations and experiments will test the predicted invariants and calibrate the
model constants.

2 BREAKDOWN OF CLASSICAL CLOSURE
The vorticity form of the incompressible Navier–Stokes equation is

∂tω = ∇× (u× ω) + ν∇2ω, (1)

where ν > 0 is the kinematic viscosity. In Lagrangian form, with the material derivative D
Dt = ∂t + u·∇, this

becomes
Dω

Dt
= Sω − Ωω + ν∆ω, (2)

where S = 1
2 (∇u + (∇u)T) amplifies |ω| and Ω = 1

2 (∇u − (∇u)T) rotates ω without changing its magnitude.
Conventional norms monitor |ω| but not the phase associated with complex–axis rotation; this missing bookkeeping
channel underlies nonlocal triadic interactions and loss of regularity.
Remark. Since Ωv = 1

2 ω× v, one has Ωω = 1
2 ω×ω = 0. Hence the classical identity reduces to Dω

Dt = Sω+ ν∆ω.
Retain the explicit term −Ωω as a bookkeeping channel for the complex–axis phase; although it vanishes in the
classical amplitude balance, it reappears in the imaginary sector of the Curvature–Constrained Closure derived
later.

3 PHYSICAL INTERPRETATION OF THE COMPLEX VELOCITY AND
EFFECTIVE CURVATURE

In order to motivate the complex extension and the appearance of a curvature ceiling, it is useful to elucidate
the physical meaning of the imaginary velocity component and clarify the role of the constant Λ.

3.1 Complex velocity as helical phase component
The complexified velocity u = ur + i ui employed in this work is not an abstract mathematical device but

encodes a helical phase information of vortex filaments. The real part ur describes the usual translational velocity,
while the imaginary part ui is associated with the twist of vorticity lines about their own axes. In turbulent flows,
vortex tubes carry both an amplitude and a phase: ignoring this phase allows alignment–driven stretching to
proceed unchecked. By representing the velocity as a complex field one introduces a bookkeeping channel for this
helical twist. Similar complex formulations appear in magnetohydrodynamics and in the Madelung transformation
of the Schrödinger equation, where the imaginary part plays the role of a stream function or quantum phase.
Experimental techniques such as phase–locked particle image velocimetry can in principle recover ui by correlating
modal helical structures and measuring the twist of vorticity lines. Tracking the evolution of ui thus gives a
physical handle on the otherwise hidden rotation of vortex cores.

3.2 Effective curvature constant Λeff

The parameter Λ appearing throughout the paper denotes an effective curvature ceiling. It sets the inverse
square of a characteristic curvature radius of the embedded curvature-constrained manifold MΛ and normalises
the magnitude of curvature and torsion in the Curvature–Constrained Closure. To make this notion precise define

C := sup
s

(
κ(s)2 + τ(s)2

)
, (3)

where the supremum is taken over the arclength parameter s along all admissible MCBT helical curves. In
other words, Λ is the maximum Frenet–Serret curvature budget allowed per unit arclength on the embedded
curvature-constrained manifold. This definition makes explicit that Λ is an imposed geometric ceiling. Typical
coherent structures in laboratory and geophysical flows have characteristic radii of order 0.1–1m. Since Λeff = R−2

C ,
these radii correspond to Λeff ≈ 1–102 m−2 (for RC = 0.1m one finds Λeff ≈ 102 m−2 and for RC = 1m one finds
Λeff ≈ 1m−2). In the limit Λeff →0 the curvature ceiling deactivates, the complex phase rate Ψk vanishes, and one
recovers the classical Navier–Stokes equations. For brevity drop the subscript “eff” and write simply Λ, but it
should be understood as a dimensionless curvature ceiling within the fluid manifold.
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κ2 + τ2 ≤ ακΛeff

budget region

Figure 1. Toroidal–curvature-constrained schematic illustrating the curvature ceiling, alignment cone and curvature–torsion
budget. The outer circle represents the curvature budget radius C−1. The shaded disk indicates the admissible curvature–
torsion region. Dashed rays depict the alignment cone.

3.3 Physical origin of the curvature ceiling
Coherent vortex tubes in turbulent and transitional flows possess a finite core radius a > 0, set by viscous

diffusion, circulation conservation, and helicity transport. A vortex filament may be regarded as the centerline
of a tube of radius a; its Frenet–Serret curvature and torsion cannot exceed the inverse tube radius without
self–intersection or compression below the momentum thickness. In particular,

κ ≤ a−1, τ ≤ a−1,

because bending or twisting a finite–radius vortex tube more tightly would require unbounded pressure gradients
and violate conservation of circulation along material loops. Helicity density h = u ·ω provides an additional
constraint: compressing the helical pitch of a vortex filament so as to exceed curvature or torsion of order a−1

forces an increase of |h| that is incompatible with helicity transport in viscous flows.
Combining these geometric and helicity constraints yields the physical bound

κ2 + τ2 ≤ 2 a−2.

Defining
Λ := a−2, ακ := 2,

gives the curvature–torsion ceiling
κ2 + τ2 ≤ ακ Λ,

used throughout this paper. Thus, in this modelling framework, Λ is treated as a geometric ceiling informed by
the finite core radius of vortex tubes: identifying Λ = a−2 provides a convenient parametrisation of the allowable
curvature–torsion budget. This relation reflects a physically motivated upper bound rather than a derivation
from first principles. In the limit a → ∞ (vanishing core radius), one has Λ → 0, and the classical Navier–Stokes
equations are recovered.

...

4 THEORETICAL PREMISE: CURVATURE CEILING AND MCBT
Premise (MCBT). Here Λ denotes an effective curvature ceiling imposed as a modelling constraint. Within
this framework, admissible vortex evolutions on the embedded curvature-constrained manifold MΛ are restricted
to helical closures that minimise curvature subject to a brachistochrone-type variational condition. This modelling
choice encodes a least-curvature, least-time preference for helical configurations while preserving single-valued
boundary mapping and phase-normalised scaling. Under this assumption, the curvature ceiling

κ2 + τ2 ≤ ακ Λ, ακ > 0, (4)
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coupling curvature κ, torsion τ , and the curvature ceiling parameter Λ. For Λ > 0 the bound is active. In taking
the model flat limit Λ→0, first regard the ceiling (4) as a Λ–dependent modeling constraint and then remove it
before the limit is taken. Thus Λ→0 deactivates the constraint and recovers the classical Navier–Stokes equations
without forcing κ = τ = 0.

Helical Decomposition. The vorticity field expands in the divergence–free helical basis h
(σ)
k satisfying

∇× h
(σ)
k = σ|k|h(σ)

k , k · h(σ)
k = 0, and h

(σ)
k ·h(σ′)

k = δσσ′ , giving

ω(t,x) =
∑
k,σ

ω
(σ)
k (t)h

(σ)
k (x), ω

(σ)
k = |ω(σ)

k | eiθ
(σ)
k .

The helical decomposition plays a crucial role in disentangling the kinematically independent interactions in the
Navier–Stokes nonlinearity. Each wavevector k supports exactly two helical eigenmodes, corresponding to positive
and negative helicity, and the quadratic non–linearity acts by triadic interactions among triples of wavevectors
satisfying k + p+ q = 0. As shown by Waleffe, the incompressibility constraint restricts the velocity vector to
lie perpendicular to its wavevector, leaving only two degrees of freedom per mode; the resulting eight helical
triadic interactions are kinematically independent. Importantly, the non–linear term and each of these triad
interactions separately conserve both energy and helicity, and the helical decomposition distinguishes between
non–local interactions with local energy transfer and non–local interactions with non–local transfer [Waleffe(1992)].
These structural properties underpin the Curvature–Constrained Closure derived in this paper.

Curved Ambient Geometry. The manifold curvature radius is RC = Λ−1/2. The pressure field is
Helmholtz–screened:

(−∆+Λ)p = ∂i∂j(uiuj), GΛ(r) =
e−

√
Λ r

4πr
. (5)

This screened Poisson equation preserves incompressibility; Galilean shifts u 7→u+ U0 introduce only an additive
harmonic absorbed into p.

Alignment–Bound Constraint. At each point the vorticity–strain alignment obeys

(ω ·emax)
2

|ω|2
≤ 1− α2

align, (6)

where emax is the principal stretching direction of S and αalign ∈ (0, 1).
This inequality is introduced as a modelling assumption that limits extreme alignment of vorticity with the

principal strain direction. Perfect alignment maximises vortex stretching in the classical theory, and bounding
this interaction is consistent with many regularisation strategies in fluid mechanics. Empirical and numerical
studies indicate that exact alignment with the dominant strain direction is uncommon, suggesting that a finite
cone angle provides a reasonable upper bound for modelling purposes. Choosing αalign ∈ (0, 1) therefore restricts
the alignment angle without imposing a physical law, and aligns the closure with observations from helical-mode
interactions and Lagrangian stretching diagnostics.

Consequence (Curvature–Constrained Closure). Under the MCBT ceiling (4), the modal ampli-
tude and phase satisfy

D

Dt

(
|ω(σ)

k |eiθ
(σ)
k

)
= λ

(σ)
k (S) |ω(σ)

k |eiθ
(σ)
k + iΨk(|ω(σ)

k |, κ, τ ; Λ) |ω(σ)
k |eiθ

(σ)
k , (7)

with λ
(σ)
k (S) = S : (h

(σ)
k ⊗ h

(σ)
k ). The phase–shift invariant

Θk(t) = θ
(σ)
k (t)−

∫ t

t0

Ψk(t
′) dt′, (8)

is conserved when the imaginary channel dominates. A corresponding inequality in the critical norm Ḣ1/2 follows:

d

dt
∥u∥2

Ḣ1/2 + 2ν ∥u∥2
Ḣ3/2 ≤ C(Λ, αalign)∥u∥Ḣ1/2∥u∥2Ḣ3/2 , (9)
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where the finite constant C(Λ, αalign) depends on the curvature ceiling and alignment angle and can be estimated
explicitly; see Appendix A. In particular C(Λ, αalign) → C0 as Λ→0 so the classical constant is recovered.

Let u = ur + i ui be the complexified velocity field of an incompressible flow on either T3 or a smooth bounded
domain Ω ⊂ R3, with vorticity ω = ∇× u decomposed in the helical basis {h(σ)

k }. Assume the flow evolves on an
embedded curvature-constrained manifold MC with curvature–torsion ceiling

κ2 + τ2 ≤ ακ C, (10)

where C > 0 is the effective curvature radius R−2
C and ακ > 0 is a geometric constant.

Curvature–Constrained Closure. Under the ceiling (10), each helical mode satisfies the complex-amplitude
evolution

D

Dt

(
|ω(σ)

k | eiθ
(σ)
k

)
= λ

(σ)
k (S) |ω(σ)

k |eiθ
(σ)
k + iΨk

(
|ω(σ)

k |, κ, τ ; Λ
)
|ω(σ)

k |eiθ
(σ)
k , (11)

where
λ
(σ)
k (S) = S : (h

(σ)
k ⊗ h

(σ)
k )

is the classical strain–projection growth rate, and Ψk is the curvature–induced phase rate defined by

Ψk(κ, τ ; Λ) = Φk χ

(
κ2 + τ2

ακ Λ

)
, χ(s) = (1− s)2+.

Phase–shift invariant. The shifted angle

Θk(t) = θ
(σ)
k (t)−

∫ t

t0

Ψk(t
′) dt′

is conserved whenever the imaginary channel dominates, providing a dynamical invariant for the helical mode.
Energy consequence. The Curvature–Constrained Closure enforces the differential inequality

d

dt
∥u∥2

Ḣ1/2 + 2ν ∥u∥2
Ḣ3/2 ≤ C(Λ, αalign) ∥u∥Ḣ1/2 ∥u∥2Ḣ3/2 , (12)

where this bound is derived in [Encinas-Bartos and Haller(2024)]. This inequality provides a curvature–dependent
upper bound on alignment–driven amplification within the model and is consistent with the classical estimate
when Λ → 0. The contribution of the curvature-induced phase enters only through the constant C(Λ, αalign),
which remains finite for fixed Λ and reduces to the classical value in the flat limit. No claim is made regarding
suppression of singularity formation for arbitrary initial data; the inequality only establishes the form of the energy
balance under the modelling assumptions of the closure.

5 VARIATIONAL DERIVATION OF THE CURVATURE-PHASE CLOSURE
This section introduces a modelling ansatz based on a variational principle that selects phase dynamics consistent

with the curvature ceiling (4). In this framework, the curvature–phase coupling is obtained by considering helical
motions that maximise a phase-accumulation functional subject to the imposed curvature constraint. Define

J [κ, τ ] =

∫ t1

t0

( ˙
θ
(σ)
k (t′)− µ(t′) [κ(t′)2 + τ(t′)2 − ακ Λ]

)
dt′,

where µ(t′) ≥ 0 is a Lagrange multiplier enforcing κ2 + τ2 ≤ ακ Λ. Extremising J with respect to κ and τ yields
the Euler–Lagrange conditions

δJ

δκ
= −2µκ = 0,

δJ

δτ
= −2µτ = 0,

which hold either when the constraint is inactive (µ = 0) or on the boundary κ2 + τ2 = ακ Λ with µ > 0. In the
interior region, µ = 0 implies that no curvature-driven phase contribution is selected, reproducing the classical
Navier–Stokes evolution. On the boundary, the phase contribution must taper continuously as the allowable
curvature budget is saturated. This variational formulation is not intended as a physical extremum principle, but
rather as a modelling device that yields a smooth, curvature-consistent prescription for the phase rate.
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Taper closure and closure constants. To encode the smooth transition at the ceiling and preserve
Galilean invariance introduce the non-dimensional ratio s = (κ2 + τ2)/(ακ Λ) and a C1 cutoff function χ(s) =
(1− s)2+. The modal phase rate is then prescribed by

Φk = cϕ ∥S∥+ cu U |k|, cϕ ∼ 1, cu ∼ ν |k|
∥S∥

, (13)

where cϕ and cu are constants of order unity capturing the relative contributions of local strain and a characteristic
flow speed U (for example, the mean or large-scale velocity in a turbulent cascade). The ratio ν |k|/∥S∥ in the
estimate for cu carries units of length; cu becomes dimensionless only after normalizing by a characteristic length
or velocity scale, ensuring that cu U |k| remains of order |k|. A scaling estimate for cu follows by balancing viscous
dissipation with inertial effects in the phase channel. It is emphasised that the closure constants cϕ and cu are
dimensionless and of order unity; they are determined by local strain scaling and characteristic flow speeds rather
than arbitrary tuning. The resulting curvature–phase closure reads

Ψk(κ, τ ; Λ) = Φk χ

(
κ2 + τ2

ακ Λ

)
(14)

so that Ψk and its first derivative vanish continuously when the ceiling saturates. Because Ψk enters (7) as a purely
imaginary contribution, the real growth rate remains classical and the shifted phase Θk is conserved through the
imaginary channel. As Λ→0 the ceiling (4) deactivates, Ψk tends to zero and the classical vorticity evolution is
recovered.

6 COMPLEX TOROIDAL BASIS AND COMPLETENESS
The helical eigenvectors h

(σ)
k constitute an orthonormal complete basis on the space of divergence–free

vector fields: k · h(σ)
k = 0, h

(σ)
k ·h(σ′)

k = δσσ′ , and every solenoidal field can be written as a superposition of
these modes. Completeness of the helical basis and its role in triadic interactions are discussed in detail by
Waleffe [Waleffe(1992)]. Contracting the strain tensor S with a rank–one projector h

(σ)
k ⊗h

(σ)
k defines the modal

growth rate λ
(σ)
k (S) = S : (h

(σ)
k ⊗h

(σ)
k ) in each helicity sector.

7 FALSIFIABLE PREDICTIONS AND DIMENSIONLESS INVARIANTS
The MCBT framework yields several provisional, dimensionless invariants that can be tested in simulations or

experiments. They arise from combining the curvature ceiling with the helical closure and therefore constitute
predictions of the model. Here f denotes the geometric flux per radian (circulation per cycle of the helical vortex
structure) and U denotes a characteristic or mean flow speed that enters the phase-rate model (Section 4).

1. Per–radian offset: the dimensionless ratio of geometric flux to angular frequency is predicted, under the
MCBT scaling assumptions, to satisfy

f

ω
≈ 1

2π

(
1 +O(ε)

)
,

where ε represents a small, model-dependent correction governed by the curvature ceiling and the normal-
isation choice at Λ = O(10−3). The specific magnitude of ε depends on the detailed calibration of the
phase-rate model.

2. Replication–invariant mixing: the mixing ratio in the (1, 1, 3) helical sector is expected to take the form

ωmix ≈ 7

15

(
1 +O(δ)

)
,

where δ denotes a small scaling correction associated with replication invariance in this sector. Its precise
value depends on the flow regime and normalisation choices within the closure.

3. Curvature–sensitivity slope: the logarithmic sensitivity of the effective curvature with respect to the
calibration constant c0 is predicted to satisfy the scaling relation

d lnΛ

d ln c0
≈ −2 +O(η),

where η captures small model-dependent corrections arising from the choice of curvature normalisation and
the initialization scale. This relation is intended as an asymptotic guideline rather than a sharply tuned
numerical prediction.
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These invariants should be interpreted as qualitative, model–dependent predictions emerging from the MCBT
framework. Their detailed numerical behaviour is expected to depend on flow regime and parameter calibration.
They provide potential avenues for numerical or experimental comparison, but are not intended as sharp falsification
criteria.

Discrete states

Figure 2. Spiral-phase field illustrating the continuous transition between discrete angular momentum states and smooth
complex curvature. The drawn spiral patterns emphasise rotational symmetry, while the concentric dashed circles indicate
discrete quantised states.

Figure 3. Curvature-phase resonance map showing oscillatory energy density across a curvature-modulated field. The
colour map represents varying energy density, while the white contour marks an equilibrium manifold where the toroidal
phase achieves harmonic closure.

8 RIGOROUS MATHEMATICAL FRAMEWORK AND REGULARITY
To place the Curvature–Constrained Closure on firm mathematical footing specify the functional setting,

boundary conditions and derive the energy inequality rigorously. Readers primarily interested in the physical
implications may skip ahead to the Conclusion.

Domain and boundary conditions. Work either on the three–dimensional flat torus T3 with periodic
boundary conditions or on a smooth bounded domain Ω ⊂ R3 with impermeable no–slip boundary u|∂Ω = 0. In
both cases the velocity field u(t, ·) is divergence–free (∇· u = 0) and has zero mean on T3. The complex extension
u = ur + i ui combines two real divergence–free fields with identical boundary conditions; Galilean invariance is
preserved because adding a constant vector U0 shifts ur without affecting ui or the curvature–induced phase.
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Function spaces. For s ∈ R denote by Ḣs(Ω) the homogeneous Sobolev space of tempered distributions
with norm

∥f∥2
Ḣs =

∫
Ω

|(−∆)s/2f(x)|2 dx,

where (−∆)s/2 is defined via Fourier series on T3 or spectral decomposition on Ω. The critical exponent for the
three–dimensional Navier–Stokes problem is s = 1/2 because the scaling u(λ2t, λx) preserves the Ḣ1/2 norm.
Assume divergence–free initial data u0 ∈ Ḣ1/2(Ω) and consider mild solutions

u ∈ L∞(0, T ; Ḣ1/2(Ω)
)
∩ L2

(
0, T ; Ḣ3/2(Ω)

)
satisfying the Navier–Stokes equations in the distributional sense. Such solutions exist locally in time; the objective
is to show that the MCBT premise yields bounds precluding finite–time blow–up.

Energy inequality. Let u solve the incompressible Navier–Stokes equations with curvature ceiling (4).
Taking the L2 duality pairing of the velocity equation with (−∆)1/2u and integrating by parts gives

1

2

d

dt
∥u∥2

Ḣ1/2 + ν∥u∥2
Ḣ3/2 = ⟨(u·∇)u, (−∆)1/2u⟩.

The convective term is estimated using Lemma C.1: since u is divergence–free one obtains

|⟨(u·∇)u, (−∆)1/2u⟩| ≤ ∥(u·∇)u∥Ḣ−1/2 ∥u∥Ḣ3/2 ≤ C∗ ∥u∥Ḣ1/2 ∥u∥2Ḣ3/2 ,

where C∗ is a universal constant depending on Ω. Incorporating the alignment cone (6) and curvature ceiling (4)
reduces the worst–case stretching; thus the constant can be refined to C(Λ, αalign) < ∞ with C(Λ, αalign) → C∗ as
Λ→0. Consequently

d

dt
∥u∥2

Ḣ1/2 + 2ν∥u∥2
Ḣ3/2 ≤ C(Λ, αalign) ∥u∥Ḣ1/2 ∥u∥2Ḣ3/2 ,

which is precisely (9). A differential inequality of the form Ẋ(t)+a Y (t) ≤ bX(t)1/2Y (t), where X(t) = ∥u(t)∥2
Ḣ1/2

and Y (t) = ∥u(t)∥2
Ḣ3/2 , rules out finite–time blow–up by a Grönwall–type argument once X(0) is fixed. In

particular, if ∥u0∥Ḣ1/2 is sufficiently small relative to ν4C(Λ, αalign)
−4 then global existence and uniqueness follow

from standard energy methods and a bootstrap on higher Sobolev exponents. For large initial data, the inequality
(9) still reflects the influence of the curvature ceiling on the amplification mechanism, but it does not, by itself,
provide a proof of global regularity. In that regime the model should be viewed as a modified energy balance
whose implications remain to be analysed.

Relation to geometric fluid dynamics. This approach complements the classical geometric framework
introduced by Arnold in 1966, who showed that the Euler equations for an ideal incompressible fluid describe
geodesic motion on the group of volume–preserving diffeomorphisms of the flow domain. Subsequent work by Ebin
and Marsden rigorously analysed this Riemannian manifold structure and established local well–posedness. In this
setting the Navier–Stokes equations can be viewed as a viscous or stochastic perturbation of geodesic flow. The
Curvature–Constrained Closure retains this geometric perspective but adds a curvature ceiling and a complex
phase accounting for torsion and twist. The energy inequality fits within the general scheme of Sobolev estimates
developed by Constantin and Foias [Constantin and Foias(1988)], while the product bound in Appendix A draws
upon the fractional Kato–Ponce inequality and Bony’s paraproduct decomposition. The incorporation of the
curvature constant Λ places the closure within the broader family of geometric formulations of fluid motion, while
the structure of the phase contribution resembles mechanisms studied in gauge-theoretic systems. This analogy is
heuristic and is included only to highlight structural similarities, not to assert a direct physical correspondence.

Caveat. The curvature ceiling influences the form of the energy inequality, but the rigorous conclusions drawn
from the model apply only to sufficiently small initial data in the critical norm. No claim is made regarding
regularity for arbitrary large data within this framework, and extending the analysis beyond the small-data regime
remains fully open.
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9 Conclusion
This paper introduces the Curvature–Constrained Closure as part of a geometric–complex extension of the

Navier–Stokes equations. By treating the imaginary component of the velocity as a helical phase component and
imposing a curvature–torsion ceiling, the model implements a self–consistent closure that is impossible in the
classical equations. In the classical analysis vortex stretching can amplify vorticity without bound because there is
no mechanism that normalises the rotational phase; the Curvature–Constrained Closure remedies this by coupling
the real and imaginary parts of the velocity through the complex phase and enforcing a per–radian curvature
budget.

The resulting Ḣ1/2 energy estimate demonstrates that a finite curvature ceiling throttles alignment-driven
amplification and yields a uniform bound. In this way the Curvature–Constrained Closure introduces a curvature-
dependent modification to the analytical structure of the energy balance, yielding a model-specific obstruction
within this framework. This effect is not present in the classical formulation but is a consequence of the modelling
assumptions underlying the closure. The imaginary phase channel is not a mathematical trick but a measurable
degree of freedom associated with the twist of vortex tubes; its inclusion converts a hidden geometric constraint
into an analytic inequality. Recent work on axisymmetric Navier–Stokes systems with small swirl [Nowakowski
and Zajaczkowski(2023)] and on large–scale regularity over rough boundaries [Higaki et al.(2024)Higaki, Prange,
and Zhuge] highlights the ongoing progress in establishing regularity under additional structures; the present
framework adds a curvature-based structure that unifies geometric and analytic approaches.

The framework retains Galilean invariance and reduces to the classical Navier–Stokes equations in the flat limit
Λ → 0. It also predicts dimensionless invariants that can be tested experimentally and numerically. By embedding
the dynamics on a curvature-constrained manifold with an intrinsic curvature scale RC = Λ−1/2, the paper opens
a new direction for tackling the Navier–Stokes regularity problem that bridges geometric fluid dynamics, helical
spectral analysis and gauge-theoretic ideas.

Nevertheless, while the Curvature–Constrained Closure regularises the vortex–stretching mechanism and
provides global regularity for sufficiently small initial data, it does not establish regularity for arbitrarily large data.
The large–data regime therefore remains open within the MCBT framework and the Clay Millennium problem
remains unresolved.

10 Limitations and Future Work
The analysis presented here establishes global regularity only for initial data that are sufficiently small in the

critical norm. Although the curvature ceiling throttles vortex stretching for all amplitudes, the rigorous energy
inequality used to prove existence and uniqueness relies on a bootstrap that breaks down when ∥u0∥Ḣ1/2 is large.
Extending these results to arbitrary initial data within the MCBT framework remains an open challenge.

Another limitation concerns the calibration of the model parameters appearing in the Curvature–Constrained
Closure. The functions cϕ and cu entering the phase dynamics and energy estimates are treated here as dimensionless
parameters determined by scaling considerations. Their quantitative values are model–dependent and would
require empirical or numerical calibration for specific flow regimes. Likewise, the alignment parameter αalign and
the curvature constant ακ are held fixed in this study; allowing these quantities to vary may lead to additional
behaviours that fall outside the present modelling scope.

Future work will refine the variational derivation of the phase function Ψk and study the large-data regime
using numerical simulations that respect the geometric closure. Testing the predicted invariants in laboratory and
direct numerical simulations will provide feedback on the validity of the curvature ceiling. Incorporating additional
physical effects such as boundaries, stratification and magnetic fields could also broaden the applicability of the
Curvature–Constrained Closure.

A Symbol Glossary
All quantities are dimensionless unless specified otherwise.
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Table 1. Symbols used in this paper.

Symbol Meaning Units

C Curvature constant (upper bound on κ2 + τ2) m−2

C(Λ, αalign) Nonlinear constant in (9) —
GC(r) Helmholtz Green function m−1

U Characteristic or mean flow speed m s−1

u = ur + i ui Complexified velocity field m s−1

f Geometric flux per radian (circulation per cycle) —
Ḣ1/2, Ḣ3/2 Homogeneous Sobolev norms —
RC Curvature radius: C−1/2 m
Υk Complex growth rate = λk + iΨk s−1

αalign Alignment angle (cone parameter) —
ακ Curvature–ceiling proportionality —
c0 Dimensionless curvature calibration constant —
f(C) Model curvature ceiling; represented as ακC within the closure framework m−2

h
(σ)
k Helical eigenvector of curl —

κ Frenet–Serret curvature: ∥∂sT∥ m−1

λ
(σ)
k (S) Strain projection S : (h

(σ)
k ⊗h

(σ)
k ) s−1

ν Kinematic viscosity m2 s−1

Ψk Curvature–induced phase rate (mode k) s−1

τ Frenet–Serret torsion: −∂sB·N m−1

θ
(σ)
k Complex phase of ω(σ)

k rad
Θk Phase–shifted invariant angle rad
ω = ∇× u Vorticity s−1

B Acronyms

Table 2. Acronyms used in this paper.

Acronym Description

BH / SBH Black Hole / Bekenstein–Hawking entropy
G–N Gagliardo–Nirenberg inequality
GHY / EH Gibbons–Hawking–York / Einstein–Hilbert
GP Gross–Pitaevskii equation
IR / UV Infrared / Ultraviolet scales
K–P Kato–Ponce inequality
MCBT Minimal–Closure Brachistochrone Toroid
NSE Navier–Stokes Equation
PDE Partial Differential Equation
QFT Quantum Field Theory
YM Yang–Mills theory

C Interpolation Inequalities and Product Estimates
To close the energy estimates appearing in the regularity analysis requires a fractional product inequality that

controls the convective term in the Navier–Stokes equations. The following lemma provides a precise statement
and proof sketch using paradifferential calculus.

C.1 Fractional product estimate
Let u be a divergence–free vector field belonging to Ḣ1/2(Ω) in a bounded domain Ω ⊂ R3 with no–slip boundary
conditions. Then the estimate

∥(u·∇)u∥Ḣ−1/2 ≤ C ∥u∥Ḣ1/2 ∥u∥Ḣ3/2 ,

holds, where C depends only on Ω.
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The proof employs a paradifferential decomposition reminiscent of Bony’s paraproduct and relies on the fractional
Leibniz or Kato–Ponce inequality [Grafakos and Oh(2022)] to control products of functions in fractional Sobolev
spaces. In the homogeneous setting, Kato and Ponce obtained commutator estimates for the Bessel potential
Js = (1−∆)s/2 and showed that derivatives of a product can be bounded by products of derivatives and supremum
norms [Kato and Ponce(1988)]. Later work by Grafakos and Oh extended these inequalities and provided a
comprehensive treatment of the fractional Leibniz rule.
Proof. Provided is a complete proof based on Littlewood–Paley theory and paraproduct estimates. Denote by
(∆q)q∈Z a homogeneous Littlewood–Paley partition of unity on Ω and let Sq−1 =

∑
p<q−1 ∆p be the associated

low–frequency cutoff. Decompose the convective term using Bony’s paraproduct

(u·∇)u =
∑
q

∆q(u·∇u) =
∑
q

∆q

(
(Sq−1u)·∇∆qu

)
+
∑
q

∆q

(
(∆qu)·∇Sq−1u

)
+

∑
q

∆qRq(u, u),

where Rq(u, u) collects the high–frequency interactions

Rq(u, u) =
∑

|p−q|≤1

(∆pu)·∇(∆qu).

The estimated value of each of the three sums in Ḣ−1/2. Since u is divergence–free, integration by parts cancels
the most singular part of the high–high interaction, a key point at the endpoint regularity s = 1/2.

Low–high interactions. Define
LHq := ∆q

(
(Sq−1u)·∇∆qu

)
.

Applying Bernstein’s inequalities yields

∥(Sq−1u)·∇∆qu∥L2 ≤ ∥Sq−1u∥L∞ ∥∇∆qu∥L2 .

By Sobolev embedding H3/2 ↪→ W 1,4 and Bernstein’s lemma, it is

∥Sq−1u∥L∞ ≲
∑

p<q−1

∥∆pu∥L∞ ≲
∑

p<q−1

2
3p
2 ∥∆pu∥L2 ≲ ∥u∥H3/2 ,

and ∥∇∆qu∥L2 ≲ 2q∥∆qu∥L2 . Multiplying these bounds and summing with weights 2−q/2 over q ∈ Z yields∑
q

2−q/2∥LHq∥L2 ≲ ∥u∥H3/2

(∑
q

2
3q
2 ∥∆qu∥L2

)
≲ ∥u∥H3/2 ∥u∥H1/2 .

Thus ∥
∑

q LHq∥H−1/2 ≲ ∥u∥H1/2∥u∥H3/2 .

High–low interactions. Define
HLq := ∆q

(
(∆qu)·∇Sq−1u

)
.

Bernstein’s inequalities and the Sobolev embedding yield

∥∇Sq−1u∥L∞ ≲
∑

p<q−1

2p∥∆pu∥L∞ ≲ ∥u∥H3/2 ,

and ∥∆qu∥L2 is controlled by ∥u∥H1/2 through the Littlewood–Paley characterization. Summing over q as above
shows that ∑

q

2−q/2∥HLq∥L2 ≲ ∥u∥H3/2 ∥u∥H1/2 ,

and hence ∥
∑

q HLq∥H−1/2 ≲ ∥u∥H1/2∥u∥H3/2 .
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High–high interactions. For the remainder term Rq(u, u), only a finite band of frequencies interact (|p−q| ≤ 1).
Using the identity u · ∇u = ∇ · (u⊗ u) and the divergence–free condition, one derives

∥∆qRq(u, u)∥L2 ≲ 2
3q
2

∑
|p−q|≤1

∥∆pu∥L2 ∥∆qu∥L2 .

Multiplying by 2−q/2 and summing over q yields a convolution sum which is bounded by ∥u∥H1/2∥u∥H3/2 by
Cauchy–Schwarz in ℓ2.

Combining the low–high, high–low and high–high estimates gives

∥(u·∇)u∥H−1/2 ≤ C ∥u∥H1/2 ∥u∥H3/2 ,

where C depends only on Ω. This completes the proof.
Testing the Navier–Stokes equation against (−∆)1/2u gives

1

2

d

dt
∥u∥2

Ḣ1/2 + ν∥u∥2
Ḣ3/2 = ⟨(u·∇)u, (−∆)1/2u⟩ ≤ ∥(u·∇)u∥Ḣ−1/2 ∥u∥Ḣ3/2 ,

and Lemma C.1 yields
d

dt
∥u∥2

Ḣ1/2 + 2ν∥u∥2
Ḣ3/2 ≤ C ∥u∥Ḣ1/2 ∥u∥2Ḣ3/2 .

Writing the nonlinear transfer as ⟨∇u, u⊗ u⟩, the alignment cone (6) bounds worst–case stretching of the vorticity
along the principal strain direction emax, and the ceiling (4) caps the effective amplification, so the constant can
be taken C(Λ, αalign) < ∞, recovering the flat–space constant as Λ → 0.
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