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ABSTRACT

Introduced is the Complex π Equation (hereafter CPE), a finite formulation that replaces the transcendental circle
constant with a construct derived from polygonal closure and complex-phase symmetry. Starting from a diameter-
normalised boundary (D = 1), the model employs inscribed and circumscribed perimeters to define a convergent
midpoint m and half-width r. Through a single phase parameter λ, the real surrogate S(λ) = mpoly + r(1− 2λ) and
its complex embedding z(λ) = mpoly + r[(1− 2λ) + i 2

√
λ(1− λ)] generate a closed algebraic locus equivalent to

circular continuity without invoking π. This substitution eliminates irrational dependence and yields exact finite
approximations consistent across polygonal refinements. To further demonstrate that the complex form satisfies a
quadratic constraint (ℜz −m)2 + (ℑz)2 = r2, serving as the invariant closure condition for all circular and harmonic
systems. The resulting structure provides a deterministic pathway from discrete geometry to continuous curvature,
forming a foundational bridge between polygonal quantization and complex analysis.
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1 Introduction
Classical geometry defines the circle through the transcendental constant π, the infinite ratio between cir-

cumference and diameter[Courant and Hilbert(1953), Archimedes(1953)]. While mathematically consistent, this
dependence on an irrational constant prevents direct algebraic integration between discrete and continuous forms.
The Complex π Equation (CPE ) resolves this limitation by reconstructing circular closure from purely finite
quantities—measurable polygon perimeters and a single phase variable λ that represents the brachistochrone-
like transition from a linear interval to a closed curvature in the complex plane. Rather than approaching π
through infinite polygon subdivision, the formulation derives circular continuity through a phase-coherent complex
embedding that remains invariant under geometric doubling.

The essential insight is that curvature continuity arises from algebraic phase symmetry, not from transcendental
limits. By lifting the midpoint and half-width of a bounded polygonal interval into the complex domain, the
construction yields the closure relation

(Re z −m)2 + (Im z)2 = r2, (1)

reproducing the properties of a perfect circle without reference to π. This establishes an exact finite surrogate for
the circumference-to-diameter ratio, stable across all polygonal refinements. Here, π emerges not as an externally
defined number but as an invariant of complex-phase equilibrium.

The sections that follow derive the complex form of the equation, demonstrate its invariance across polygonal
refinements, and validate its numerical precision through analytic and computational tests, including the Gaussian
integral benchmark. Together, these results present the Complex π Equation as a deterministic, algebraically
closed foundation for finite-phase geometry—linking discrete structure and continuous curvature within a single
unified framework.

Classical analyses of circular geometry, polygonal approximations, and complex phase symmetry appear through-
out standard mathematical physics and complex analysis texts [Courant and Hilbert(1953), Archimedes(1953),
Ahlfors(1979), Stein and Shakarchi(2003), Burden and Faires(2011)]. These works provide rigorous foundations
that complement the finite-phase perspective introduced here. This formulation does not attempt to redefine π;
rather, it constructs a finite-phase surrogate that converges to the classical constant in the appropriate limit.

2 Scope Clarification
The Complex π Equation is not a critique or replacement of the classical circle constant. It does not seek to

redefine π, challenge its transcendence, or supplant its infinite series representations. Instead, the formulation
introduced here provides an algebraic surrogate that recovers the canonical circumference–to–diameter ratio in the
refinement limit while remaining exact at every finite stage. The surrogate is derived from measurable polygonal
bounds and a phase parameter that enforces doubling invariance; it preserves the classical value of π without
invoking irrational expansions. In this sense, the construction is a computational and geometric tool: it allows
curvature-dependent expressions to be carried symbolically through finite-phase geometry rather than repeatedly
re-approximated as a decimal. The transcendental definition of π remains intact—the surrogate simply offers a
deterministic, phase-coherent pathway to the same quantity, ensuring that readers do not mistake this work for a
philosophical challenge to established mathematical constants.
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Importantly, the Complex π Equation should be viewed as a computational surrogate rather than a redefinition
of the circle constant. In the refinement limit it reproduces the canonical value of π, but it does not alter the
classical definition or transcendence of π; it simply provides a phase-consistent algebraic route to the same quantity.

Classical polygonal approximations to π achieve convergence by letting the number of sides q tend toward
infinity. As early as 1621, Willebrord Snellius proved that the perimeter of an inscribed q-gon converges to the
circle’s circumference twice as fast as its circumscribed counterpart[Beukers and Reinboud(2002)]. Such results,
and later acceleration techniques like Richardson extrapolation in numerical analysis, accelerate convergence by
combining successive approximations but still rely on limit processes. By contrast, the finite-phase construction
introduced here removes the leading-order error through a complex-phase constraint, producing a surrogate that
stabilises at finite q (see Section 4.6). To the author’s knowledge, imposing a complex-phase symmetry across
polygonal refinements has not been described previously; this distinguishes the present approach from classical
extrapolation methods and highlights its conceptual novelty.

3 Motivation and Computational Context
In numerical cosmology and astrophysical modeling, the constant π appears throughout curvature, orbital,

and field calculations. However, its transcendental nature forces it to be approximated as a finite decimal
in every numerical system, introducing rounding errors that accumulate across large data sets and iterative
simulations [Goldberg(1991)]. Even on high-performance architectures, this loss of precision propagates into
curvature tensors, spectral transforms, and wavefunction integrals, producing measurable drift at extreme scales.

The Complex π Equation provides a pathway to preserve analytical precision while maintaining computational
efficiency. By representing π through its complex-axis structure rather than as a static decimal constant, calculations
retain full symbolic coherence throughout every operation. The real component maintains geometric magnitude,
while the imaginary component carries the phase information corresponding to curvature continuity. This dual
representation ensures that all derived quantities—areas, circumferences, curvature integrals, and oscillatory
terms—remain exact until final projection to the real domain.

This method eliminates the resource overhead associated with extreme floating-point precision. It enables
rapid, high-fidelity computation of curvature-dependent quantities on any computing platform, from laboratory
instruments to large-scale cosmological simulators, without sacrificing accuracy. In practice, the CPE framework
acts as a phase-preserving operator: a way to use π symbolically within algebraic and numerical systems rather
than continually re-approximating it. Thus, it offers a deterministic and efficient route for large-scale calculations
where curvature precision defines physical validity.

4 Derivation of the Complex π Equation
4.1 Polygonal setup

Let a circle of diameter D = 1 be bounded by an inscribed and a circumscribed q-gon. Their perimeters,
Aq and Bq, form lower and upper finite bounds for the true circumference.[Archimedes(1953), Beukers and
Reinboud(2002)] Define

mpoly,q =
Aq +Bq

2
, rq =

Bq −Aq

2
. (2)

For q = 24, these values converge near the classical ratio but remain fully algebraic and π-free.
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q = 6 q = 12

Inscribed q-gon Circumscribed q-gon

Figure 1. A unit-diameter circle (D = 1) bounded by an inscribed and a circumscribed regular q-gon. The perimeters Aq

(inscribed) and Bq (circumscribed) form lower and upper finite bounds on the true circumference C = πD. Shown here are
the q = 6 and q = 12 cases, illustrating the geometric convergence of polygonal approximations as q → ∞.

4.2 Phase-weighted surrogate
Introduce a single real parameter λ ∈ [0, 1] representing the brachistochrone phase transition between inscribed

and circumscribed states. The finite surrogate for the circumference-to-diameter ratio is

S(λ) = mpoly + r(1− 2λ), (3)

which smoothly interpolates between An (λ = 1) and Bn (λ = 0). When λ is determined by doubling-invariance
across polygonal refinements (q → 2q), the resulting value S∗ remains stable to within 10−6 across all tested q.

4.3 Complex embedding
Embedding the phase geometry in the complex plane yields the finite closure law:

z(λ) = mpoly + r
[
(1− 2λ) + i 2

√
λ(1− λ)

]
. (4)

To formalise the geometric closure property of this complex embedding the following lemma is introduced,
which elevates the quadratic closure relation to an explicitly stated and proven result.

Lemma 1 (Closure Lemma). Let mpoly and r be the midpoint and half–width (as defined in Eq. (2)) for a fixed
q–gon and let λ ∈ [0, 1]. Define the complex embedding

z(λ) = mpoly + r
[
(1− 2λ) + i 2

√
λ(1− λ)

]
.

Then z(λ) lies on the algebraic circle centred at mpoly with radius r and satisfies the closure relation

(Re z(λ)−mpoly)
2 + (Im z(λ))2 = r2. (5)

Furthermore, the real part of z reproduces the surrogate circumference S(λ) = mpoly + r(1− 2λ) and the imaginary
part is uniquely determined as Im z(λ) = r 2

√
λ(1− λ).

Proof. Insert the definition of z(λ) into the left–hand side of Eq. (5). The real component is Re z = mpoly+r(1−2λ),
while the imaginary component is Im z = r 2

√
λ(1− λ) by construction. A direct algebraic substitution yields(

r(1− 2λ)
)2

+
(
r 2

√
λ(1− λ)

)2
= r2

(
(1− 2λ)2 + 4λ(1− λ)

)
.

Since 4λ(1− λ) + (1− 2λ)2 = 4λ− 4λ2 + 1− 4λ+ 4λ2 = 1, the expression reduces to r2. This establishes Eq. (5),
confirming that z lies on the circle of radius r centred at mpoly. The expression for Re z follows immediately
from the definition of z, and the imaginary part is uniquely fixed by solving Eq. (5) for Im z once Re z and r
are specified. The positive root is selected to preserve the intended orientation, yielding Im z = r 2

√
λ(1− λ) for

λ ∈ [0, 1].
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4.4 Quadratic closure map
Mapping z through a quadratic transformation preserves complex symmetry:

w = z2 = (ℜz)2 − (ℑz)2 + i 2(ℜz)(ℑz), (6)

|w|2 = |z|4 = (m2
poly + r2)2, (7)

confirming that the magnitude of z defines a conserved invariant across all phase values λ. This invariant serves as
the π-free equivalent of circular closure.

4.5 Phase invariance condition
To enforce consistency across polygonal refinement, one demands that the surrogate circumference remain

unchanged when the number of sides is doubled. This requirement is formalised in the following theorem.

Theorem 1 (Doubling–Invariance). Let Sq(λ) = mpoly,q+rq(1−2λ) denote the surrogate circumference associated
with an inscribed/circumscribed q–gon, and let (mpoly,q, rq) and (mpoly,2q, r2q) denote the corresponding midpoint
and half–width for a q–gon and its 2q–gon refinement. There exists a unique phase value

λ∗ =
1

2

[
1− mpoly,2q −mpoly,q

rq − r2q

]
such that Sq(λ

∗) = S2q(λ
∗). Choosing λ = λ∗ cancels the leading O(q−2) error in Sq(λ), leaves only a O(q−4)

residual, and ensures that the sequence {S∗
q } converges to π as q → ∞.

Proof. Equating the surrogates for a q–gon and its refinement yields

mpoly,q + rq(1− 2λ) = mpoly,2q + r2q(1− 2λ).

Collecting terms on the left gives (rq − r2q)(1 − 2λ) = mpoly,2q − mpoly,q. Solving for λ produces the stated
expression for λ∗. The difference rq − r2q is nonzero and the numerator and denominator vary continuously with
q, so there is a unique solution for λ in [0, 1]; this establishes existence and uniqueness. Inserting λ∗ into Sq(λ)
cancels the O(q−2) truncation error in mpoly,q and rq, as shown in the convergence analysis of Section 4.6. The
remaining error is O(q−4), so successive refinements rapidly drive S∗

q toward π, proving the convergence claim.

Immediately applying the theorem to the initial refinement pair (q = 24 → 48) yields

λ∗ = 0.6688107973, S∗ = mpoly + r(1− 2λ∗) = 3.1415810975,

corresponding to an absolute deviation of 1.16× 10−5 from the canonical π value. Successive refinements rapidly
suppress this residual error, as summarised in Table 1.

Table 1. Convergence of the finite-phase surrogate S∗ under polygonal doubling. Each step halves the angular segment,
eliminating the residual curvature bias and approaching full circular closure.

q λ∗ S∗ |π − S∗| Relative error

6 0.695 718 249 2 3.104 772 228 5 3.680 000 000 0× 10−2 1.170 000 000 0× 10−2

12 0.681 241 903 0 3.138 704 396 7 2.890 000 000 0× 10−3 9.200 000 000 0× 10−4

24 0.668 810 797 3 3.141 581 097 5 1.160 000 000 0× 10−5 3.680 000 000 0× 10−6

48 0.667 960 266 8 3.141 591 932 6 7.210 000 000 0× 10−7 2.290 000 000 0× 10−7

96 0.667 924 232 3 3.141 592 608 5 4.500 000 000 0× 10−8 1.430 000 000 0× 10−8

192 0.667 922 398 1 3.141 592 650 8 2.890 000 000 0× 10−9 9.200 000 000 0× 10−10

384 0.667 922 291 9 3.141 592 653 4 1.760 000 000 0× 10−10 5.600 000 000 0× 10−11

768 0.667 922 287 4 3.141 592 653 6 1.110 000 000 0× 10−11 3.540 000 000 0× 10−12

1536 0.667 922 287 2 3.141 592 653 6 2.790 000 000 0× 10−13 8.880 000 000 0× 10−14

3072 0.667 922 287 2 3.141 592 653 6 1.000 000 000 0× 10−15 1.000 000 000 0× 10−15
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Figure 2. Log–log plot of the absolute error |π − S∗| versus polygon refinement q for the finite-phase surrogate (blue
circles). The approximately linear downward trend on this log–log scale (slope ≈ −4) indicates that the error decreases like
q−4, confirming the analytic prediction that the doubling-invariance condition cancels the leading 1/q2 term and leaves only
a quartic residual.

4.6 Convergence analysis and error bound
The rapid convergence observed in Table 1 can be understood analytically by expanding the inscribed and

circumscribed perimeters for large q. Let x = π
2q and recall that the perimeters of a unit-diameter circle’s inscribed

and circumscribed q-gons are

Aq = 2 q sinx = π
sinx

x
, Bq = 2 q tanx = π

tanx

x
.

Expanding sinx and tanx in power series about x = 0 gives

sinx

x
= 1− x2

6
+

x4

120
+O(x6), (8)

tanx

x
= 1 +

x2

3
+

2x4

15
+O(x6). (9)

From these expressions it follows that

mpoly,q =
Aq +Bq

2
= π

[
1 +

π2

48 q2
+

5π4

4608 q4
+O

(
1

q6

)]
, rq =

Bq −Aq

2
= π

[
π2

24 q2
+

7π4

5760 q4
+O

(
1

q6

)]
,

so the midpoint mpoly,q differs from π by an O(q−2) term and the half-width rq is itself O(q−2). In the finite-phase
surrogate Sq(λ) = mpoly,q + rq(1 − 2λ) the phase parameter λ∗ is chosen by the doubling-invariance condition
to cancel the leading O(q−2) error, leaving an O(q−4) deviation from π. This analytic cancellation explains
the near-exponential convergence seen in Table 1: each doubling of q reduces the error by roughly an order of
magnitude because the quartic term scales as 1/q4. Similar series analyses appear in standard treatments of
numerical analysis and polygonal approximations[Burden and Faires(2011), Beukers and Reinboud(2002)].

The data demonstrate near-exponential convergence: each polygonal doubling reduces the residual error by
roughly an order of magnitude, generating a self-correcting feedback that cancels the curvature truncation inherent
in finite geometry. By n = 384, the surrogate S∗ is accurate to ten decimal places, and by n = 1536 the result
becomes numerically indistinguishable from π within double-precision resolution.

In the theoretical limit q → ∞, the sequence {S∗
q } converges exactly to

lim
q→∞

S∗
q = π, (10)

showing that transcendental circular continuity can be reconstructed from a purely algebraic, phase-consistent
mechanism. Through the doubling-invariance condition, the residual error is not merely reduced but completely
nullified—achieving circular closure deterministically within the finite-phase framework.
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5 Rigorous construction of the complex-pi carrier
This section gives a self-contained derivation of the complex-pi carrier used throughout this work. The carrier

is defined as
z(λ) = mpoly + r(1− 2λ) + i 2r

√
λ(1− λ), λ ∈ [0, 1], (11)

and the goal is to show that it traces a circle of radius r centered at mpoly:(
ℜz(λ)−mpoly

)2
+
(
ℑz(λ)

)2
= r2. (12)

5.1 Polygonal bounds
Let piinscribed and picircumscribed denote the classical lower and upper bounds on pi obtained from the inscribed

and circumscribed n-gons. Define

mpoly :=
piinscribed + picircumscribed

2
, r :=

picircumscribed − piinscribed
2

. (13)

Then
piinscribed = mpoly − r, picircumscribed = mpoly + r.

5.2 Circle parametrization
A circle of radius r centered at mpoly in the complex plane can be written as

w(θ) = mpoly + r cos θ + ir sin θ, θ ∈ [0, π]. (14)

Introduce a parameter λ ∈ [0, 1] defined by

λ =
1− cos θ

2
. (15)

Then
cos θ = 1− 2λ, sin θ = 2

√
λ(1− λ).

Substituting into Eq. (14) yields

w(λ) = mpoly + r(1− 2λ) + i 2r
√
λ(1− λ), (16)

which matches the definition of z(λ) in Eq. (11). This shows that z(λ) parametrizes the upper semicircle.

5.3 Direct verification
Define

x(λ) = r(1− 2λ), y(λ) = 2r
√
λ(1− λ).

Then
x(λ)2 = r2(1− 4λ+ 4λ2),

y(λ)2 = 4r2(λ− λ2).

Adding these gives
x(λ)2 + y(λ)2 = r2,

which is the required circle identity Eq. (12).

5.4 Symmetry and endpoint behavior
The imaginary component 2r

√
λ(1− λ) vanishes at λ = 0 and λ = 1, is symmetric under λ 7→ 1− λ, and is

positive on (0, 1). These properties guarantee smooth interpolation between the two polygonal bounds of pi while
remaining on the circle of radius r centered at mpoly, completing the construction of the complex-pi carrier.

Indeed, the function
g(λ) :=

√
λ(1− λ) (17)

satisfies
g(0) = g(1) = 0, g(λ) = g(1− λ), (18)

and g(λ) > 0 for all λ ∈ (0, 1). Thus the choice

ℑz(λ) = 2rg(λ) (19)

enforces zero lift at the polygonal endpoints, treats the two bounds symmetrically, and is compatible with Eq. (12).
In this sense the complex-π carrier is a geometrically well-defined object determined entirely by the finite polygonal
bounds, providing a phase-exact bookkeeping device without changing the value of π itself.
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6 Validation
The finite surrogate S∗ reproduces known analytic relationships without invoking π. For example, the Gaussian

integral [Ahlfors(1979), Stein and Shakarchi(2003)]∫ ∞

−∞
e−x2

dx =
√
S∗

yields 1.7724506, matching the canonical result within 3× 10−6. This is not a proof of analytic equivalence; it is a
numerical validation that the surrogate reproduces classical results to high precision.

While this numerical agreement confirms that S∗ can be substituted into standard analytic expressions without
loss of accuracy, it does not constitute a proof of equivalence with π. Rather, it simply shows that the finite-phase
surrogate reproduces the expected values when inserted into familiar integrals.

Likewise, substituting S∗ into area and period formulas,

A =
S∗

4
D2, T = 2S∗

√
Lpend

g
,

preserves physical accuracy while maintaining algebraic closure.

7 Discussion
The Complex π Equation demonstrates that the geometric essence of π arises from algebraic phase symmetry

rather than transcendence. By grounding circular closure in finite, measurable quantities and embedding their
phase relation in complex space, the model unifies discrete and continuous curvature within one analytic framework.
The invariance of S∗ across polygonal doubling provides a precise and stable constant suitable for substitution in
all equations traditionally dependent on π. Importantly, the surrogate achieves this without resorting to truncated
decimal expansions: the doubling–invariance condition produces virtually the same value at each refinement (equal
to within machine precision), so the entire sequence remains stable and free of transcendental approximation. The
imaginary component of z(λ) encodes the latent curvature phase—a mathematical representation of dimensional
transition analogous to the brachistochrone descent. In this view, the circle is not an infinite limit but a closed
resonance in complex space.

Beyond reproducing the circle, the finite-phase approach hints at broader applications. One could imagine
analogous complex-phase embeddings for other transcendental constants or geometric quantities, where finite
structures and phase constraints might replace infinite series. While speculative, such extensions underscore the
potential of phase symmetry to unify discrete and continuous mathematics and invite further exploration.

8 Conclusion
The Complex π Equation establishes a closed, algebraic alternative to the transcendental definition of circular

continuity. By constructing π from finite polygonal geometry and a single phase parameter, the formulation
bridges discrete structure and continuous curvature without requiring an infinite process. The complex embedding
z(λ) = m+ r[(1− 2λ) + i 2

√
λ(1− λ)] encapsulates both the real circumference surrogate and its imaginary phase

complement, together forming a self-contained closure condition (ℜz −m)2 + (ℑz)2 = r2. This reveals that what
has historically been treated as an irrational constant is instead a manifestation of stable phase symmetry in the
complex domain.

The result restores determinism to circular geometry: every refinement, phase adjustment, or complex rotation
preserves the same invariant |z|2 = m2

poly + r2. The consistency of S∗ across polygonal scales confirms that circular
closure is inherently finite, not asymptotic. This opens a new analytical pathway where curvature, resonance, and
continuity emerge from quantised geometry rather than transcendental approximation.

Unlike Richardson extrapolation or other convergence-acceleration schemes that combine successive approxi-
mations, the phase-invariance mechanism removes the dominant error term through a complex-phase constraint.
This mechanism can be applied at finite polygonal resolution, reinforcing the view that curvature is an emergent
property of algebraic phase symmetry rather than an artefact of infinite limits.
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A Symbol Glossary

Symbol Meaning Units

Aq Perimeter of the inscribed q-gon dimensionless
Bq Perimeter of the circumscribed q-gon dimensionless
D Normalised diameter of the circle (set to 1 in this work) dimensionless
g Gravitational acceleration ms−2

Lpend Pendulum length parameter in the period formula m
mpoly Midpoint (Aq +Bq)/2 of inscribed/circumscribed perimeters dimensionless
q Polygon refinement index or number of sides dimensionless
r Half-width (Bq −Aq)/2 between perimeters dimensionless
S(λ) Surrogate circumference ratio = mpoly + r(1− 2λ) dimensionless
S∗ Stable surrogate obtained at λ∗ dimensionless
w Quadratic image w = z2 used to demonstrate invariants dimensionless
z(λ) Complex embedding = mpoly + r[(1− 2λ) + i 2

√
λ(1− λ)] dimensionless

λ Phase parameter interpolating between inscribed and circumscribed states dimensionless
λ∗ Phase parameter fixed by doubling invariance dimensionless

B Acronyms

Acronym Meaning

CPE Complex π Equation
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